ﻻ يوجد ملخص باللغة العربية
The Boltzmann transport equation is one of the most relevant framework to study the heat transport at the nanoscale, beyond the diffusive regime and up to the micrometer-scale. In the general case of three-dimensional devices, the particle Monte Carlo approach of phonon transport is particularly powerful and convenient, and requires reasonable computational resources. In this work, we propose an original and versatile particle Monte Carlo approach parametrized by using ab-initio data. Both the phonon dispersion and the phonon-phonon scattering rates have been computed by DFT calculation in the entire 3D Brillouin zone. To treat the phonon transport at rough interfaces, a combination of specular and diffuse reflections has been implemented in phase space. Thermal transport has been investigated in nanowires and thin films made of cubic and hexagonal Silicon, including edge roughness, in terms of effective thermal conductivity, phonon band contributions and heat flux orientation. It is shown that the effective thermal conductivity in quasi-ballistic regime obtained from our Monte Carlo simulation cannot be accurately fitted by simple semi-analytical Matthiessen-like models and that spectral approaches are mandatory to get good results. Our Full Band approach shows that some phonon branches exhibiting a negative group velocity in some parts of the Brillouin zone may contribute negatively to the total thermal flux. Besides, the thermal flux clearly appears to be oriented along directions of high density of states. The resulting anisotropy of the heat flux is discussed together with the influence of rough interfaces.
In this work, we adopt first-principle calculations based on density functional theory and Kinetic Monte Carlo simulations to investigate the adsorption and diffusion of lithium in bilayer graphene (BLG) as anodes in lithium-ion batteries. Based on e
In this paper we investigate warm electron injection in a double gate SONOS memory by means of 2D full-band Monte Carlo simulations of the Boltzmann Transport Equation (BTE). Electrons are accelerated in the channel by a drain-to-source voltage VDS s
Avalanche photodiodes fabricated from AlInAsSb grown as a digital alloy exhibit low excess noise. In this paper, we investigate the band structure-related mechanisms that influence impact ionization. Band-structures calculated using an empirical tigh
Electronic structure of layered LiNiO2 has been controversial despite numerous theoretical and experimental reports regarding its nature. We investigate the charge densities, lithium intercalation potentials and Li diffusion barrier energies of LixNi
We present an emph{ab-initio} study of the graphene quasi-particle band structure as function of the doping in G_0 W_0 approximation. We show that the LDA Fermi velocity is substantially renormalized and this renormalization rapidly decreases as func