ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors

376   0   0.0 ( 0 )
 نشر من قبل Dmitri Nikonov
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic transport in a carbon nanotube (CNT) metal-oxide-semiconductor field effect transistor (MOSFET) is simulated using the non-equilibrium Greens functions method with the account of electron-phonon scattering. For MOSFETs, ambipolar conduction is explained via phonon-assisted band-to-band (Landau-Zener) tunneling. In comparison to the ballistic case, we show that the phonon scattering shifts the onset of ambipolar conduction to more positive gate voltage (thereby increasing the off current). It is found that the subthreshold swing in ambipolar conduction can be made as steep as 40mV/decade despite the effect of phonon scattering.

قيم البحث

اقرأ أيضاً

The high-frequency transconductance and current noise of top-gated single carbon nanotube transistors have been measured and used to investigate hot electron effects in one-dimensional transistors. Results are in good agreement with a theory of 1-dim ensional nano-transistor. In particular the prediction of a large transconductance correction to the Johnson-Nyquist thermal noise formula is confirmed experimentally. Experiment shows that nanotube transistors can be used as fast charge detectors for quantum coherent electronics with a resolution of $13mathrm{mu e/sqrt{Hz}}$ in the 0.2-$0.8 mathrm{GHz}$ band.
The observed performances of carbon nanotube field effect transistors are examined using first-principles quantum transport calculations. We focus on the nature and role of the electrical contact of Au and Pd electrodes to open-ended semiconducting n anotubes, allowing the chemical contact at the surface to fully develop through large-scale relaxation of the contacting atomic configuration. We present the first direct numerical evidence of Pd contacts exhibiting perfect transparency for hole injection as opposed to that of Au contacts. Their respective Schottky barrier heights, on the other hand, turn out to be fairly similar for realistic contact models. These findings are in general agreement with experimental data reported to date, and show that a Schottky contact is not merely a passive ohmic contact but actively influences the device I-V behavior.
We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between $sim$10 and 200 mV. We attribute them to electron tunneling assi sted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.
51 - G. Fiori , G. Iannaccone , 2005
In this work, we simulate the expected device performance and the scaling perspectives of Carbon nanotube Field Effect Transistors (CNT-FETs), with doped source and drain extensions. The simulations are based on the self-consistent solution of the 3D Poisson-Schroedinger equation with open boundary conditions, within the Non-Equilibrium Greens Function formalism, where arbitrary gate geometry and device architecture can be considered. The investigation of short channel effects for different gate configurations and geometry parameters shows that double gate devices offer quasi ideal subthreshold slope and DIBL without extremely thin gate dielectrics. Exploration of devices with parallel CNTs show that On currents per unit width can be significantly larger than the silicon counterpart, while high-frequency performance is very promising.
Transport in suspended metallic single wall carbon nanotubes in the presence of strong electron-electron interaction is investigated. We consider a tube of finite length and discuss the effects of the coupling of the electrons to the deformation pote ntial associated to the acoustic stretching and breathing modes. Treating the interacting electrons within the framework of the Luttinger liquid model, the low-energy spectrum of the coupled electron-phonon system is evaluated. The discreteness of the spectrum is reflected in the differential conductance which, as a function of the applied bias voltage, exhibits three distinct families of peaks. The height of the phonon-assisted peaks is very sensitive to the parameters. The phonon peaks are best observed when the system is close to the Wentzel-Bardeen singularity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا