ﻻ يوجد ملخص باللغة العربية
We consider the phase retrieval problem of reconstructing a $n$-dimensional real or complex signal $mathbf{X}^{star}$ from $m$ (possibly noisy) observations $Y_mu = | sum_{i=1}^n Phi_{mu i} X^{star}_i/sqrt{n}|$, for a large class of correlated real and complex random sensing matrices $mathbf{Phi}$, in a high-dimensional setting where $m,ntoinfty$ while $alpha = m/n=Theta(1)$. First, we derive sharp asymptotics for the lowest possible estimation error achievable statistically and we unveil the existence of sharp phase transitions for the weak- and full-recovery thresholds as a function of the singular values of the matrix $mathbf{Phi}$. This is achieved by providing a rigorous proof of a result first obtained by the replica method from statistical mechanics. In particular, the information-theoretic transition to perfect recovery for full-rank matrices appears at $alpha=1$ (real case) and $alpha=2$ (complex case). Secondly, we analyze the performance of the best-known polynomial time algorithm for this problem -- approximate message-passing -- establishing the existence of a statistical-to-algorithmic gap depending, again, on the spectral properties of $mathbf{Phi}$. Our work provides an extensive classification of the statistical and algorithmic thresholds in high-dimensional phase retrieval for a broad class of random matrices.
We consider the problem of Gaussian mixture clustering in the high-dimensional limit where the data consists of $m$ points in $n$ dimensions, $n,m rightarrow infty$ and $alpha = m/n$ stays finite. Using exact but non-rigorous methods from statistical
We consider the problem of compressed sensing and of (real-valued) phase retrieval with random measurement matrix. We derive sharp asymptotics for the information-theoretically optimal performance and for the best known polynomial algorithm for an en
We study the problem of detecting a structured, low-rank signal matrix corrupted with additive Gaussian noise. This includes clustering in a Gaussian mixture model, sparse PCA, and submatrix localization. Each of these problems is conjectured to exhi
In this work we study the fundamental limits of approximate recovery in the context of group testing. One of the most well-known, theoretically optimal, and easy to implement testing procedures is the non-adaptive Bernoulli group testing problem, whe
The problem of phase retrieval is to determine a signal $fin mathcal{H}$, with $mathcal{H}$ a Hilbert space, from intensity measurements $|F(omega)|$, where $F(omega):=langle f , varphi_omegarangle$ are measurements of $f$ with respect to a measureme