ﻻ يوجد ملخص باللغة العربية
This paper is concerned with stable phase retrieval for a family of phase retrieval models we name locally stable and conditionally connected (LSCC) measurement schemes. For every signal $f$, we associate a corresponding weighted graph $G_f$, defined by the LSCC measurement scheme, and show that the phase retrievability of the signal $f$ is determined by the connectivity of $G_f$. We then characterize the phase retrieval stability of the signal $f$ by two measures that are commonly used in graph theory to quantify graph connectivity: the Cheeger constant of $G_f$ for real valued signals, and the algebraic connectivity of $G_f$ for complex valued signals. We use our results to study the stability of two phase retrieval models that can be cast as LSCC measurement schemes, and focus on understanding for which signals the curse of dimensionality can be avoided. The first model we discuss is a finite-dimensional model for locally supported measurements such as the windowed Fourier transform. For signals without large holes, we show the stability constant exhibits only a mild polynomial growth in the dimension, in stark contrast with the exponential growth which uniform stability constants tend to suffer from; more precisely, in $R^d$ the constant grows proportionally to $d^{1/2}$, while in $C^d$ it grows proportionally to $d$. We also show the growth of the constant in the complex case cannot be reduced, suggesting that complex phase retrieval is substantially more difficult than real phase retrieval. The second model we consider is an infinite-dimensional phase retrieval problem in a principal shift invariant space. We show that despite the infinite dimensionality of this model, signals with monotone exponential decay will have a finite stability constant. In contrast, the stability bound provided by our results will be infinite if the signals decay is polynomial.
We study the phase reconstruction of signals $f$ belonging to complex Gaussian shift-invariant spaces $V^infty(varphi)$ from spectrogram measurements $|mathcal{G}f(X)|$ where $mathcal{G}$ is the Gabor transform and $X subseteq mathbb{R}^2$. An explic
The problem of phase retrieval is to determine a signal $fin mathcal{H}$, with $mathcal{H}$ a Hilbert space, from intensity measurements $|F(omega)|$, where $F(omega):=langle f , varphi_omegarangle$ are measurements of $f$ with respect to a measureme
In recent work [P. Grohs and M. Rathmair. Stable Gabor Phase Retrieval and Spectral Clustering. Communications on Pure and Applied Mathematics (2018)] the instabilities of the Gabor phase retrieval problem, i.e., the problem of reconstructing a funct
This paper studies the problem of accurately recovering a structured signal from a small number of corrupted sub-Gaussian measurements. We consider three different procedures to reconstruct signal and corruption when different kinds of prior knowledg
This paper investigates the convergence of the randomized Kaczmarz algorithm for the problem of phase retrieval of complex-valued objects. While this algorithm has been studied for the real-valued case}, its generalization to the complex-valued case