ترغب بنشر مسار تعليمي؟ اضغط هنا

The smallest number of vertices in a 2-arc-strong digraph which has no good pair

69   0   0.0 ( 0 )
 نشر من قبل Zhenyu Taoqiu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Bang-Jensen, Bessy, Havet and Yeo showed that every digraph of independence number at most 2 and arc-connectivity at least 2 has an out-branching $B^+$ and an in-branching $B^-$ which are arc-disjoint (such two branchings are called a {it good pair}), which settled a conjecture of Thomassen for digraphs of independence number 2. They also proved that every digraph on at most 6 vertices and arc-connectivity at least 2 has a good pair and gave an example of a 2-arc-strong digraph $D$ on 10 vertices with independence number 4 that has no good pair. They asked for the smallest number $n$ of vertices in a 2-arc-strong digraph which has no good pair. In this paper, we prove that every digraph on at most 9 vertices and arc-connectivity at least 2 has a good pair, which solves this problem.

قيم البحث

اقرأ أيضاً

Hakimi and Schmeichel determined a sharp lower bound for the number of cycles of length 4 in a maximal planar graph with $n$ vertices, $ngeq 5$. It has been shown that the bound is sharp for $n = 5,12$ and $ngeq 14$ vertices. However, it was only con jectured by the authors about the minimum number of cycles of length 4 for maximal planar graphs with the remaining small vertex numbers. In this note we confirm their conjecture.
We prove that every digraph of independence number at most 2 and arc-connectivity at least 2 has an out-branching $B^+$ and an in-branching $B^-$ which are arc-disjoint (we call such branchings good pair). This is best possible in terms of the arc- connectivity as there are infinitely many strong digraphs with independence number 2 and arbitrarily high minimum in-and out-degrees that have good no pair. The result settles a conjecture by Thomassen for digraphs of independence number 2. We prove that every digraph on at most 6 vertices and arc-connectivity at least 2 has a good pair and give an example of a 2-arc-strong digraph $D$ on 10 vertices with independence number 4 that has no good pair. We also show that there are infinitely many digraphs with independence number 7 and arc-connectivity 2 that have no good pair. Finally we pose a number of open problems.
Let $q_{min}(G)$ stand for the smallest eigenvalue of the signless Laplacian of a graph $G$ of order $n.$ This paper gives some results on the following extremal problem: How large can $q_minleft( Gright) $ be if $G$ is a graph of order $n,$ with n o complete subgraph of order $r+1?$ It is shown that this problem is related to the well-known topic of making graphs bipartite. Using known classical results, several bounds on $q_{min}$ are obtained, thus extending previous work of Brandt for regular graphs. In addition, using graph blowups, a general asymptotic result about the maximum $q_{min}$ is established. As a supporting tool, the spectra of the Laplacian and the signless Laplacian of blowups of graphs are calculated.
97 - Zhongshan Li , Fuzhen Zhang , 2017
This paper is devoted to the study of lower and upper bounds for the number of vertices of the polytope of $ntimes ntimes n$ stochastic tensors (i.e., triply stochastic arrays of dimension $n$). By using known results on polytopes (i.e., the Upper an d Lower Bound Theorems), we present some new lower and upper bounds. We show that the new upper bound is tighter than the one recently obtained by Chang, Paksoy and Zhang [Ann. Funct. Anal. 7 (2016), no.~3, 386--393] and also sharper than the one in Linial and Lurias [Discrete Comput. Geom. 51 (2014), no.~1, 161--170]. We demonstrate that the analog of the lower bound obtained in such a way, however, is no better than the existing ones.
A basic combinatorial invariant of a convex polytope $P$ is its $f$-vector $f(P)=(f_0,f_1,dots,f_{dim P-1})$, where $f_i$ is the number of $i$-dimensional faces of $P$. Steinitz characterized all possible $f$-vectors of $3$-polytopes and Grunbaum cha racterized the pairs given by the first two entries of the $f$-vectors of $4$-polytopes. In this paper, we characterize the pairs given by the first two entries of the $f$-vectors of $5$-polytopes. The same result was also proved by Pineda-Villavicencio, Ugon and Yost independently.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا