ترغب بنشر مسار تعليمي؟ اضغط هنا

The Minimum Number of $4$-Cycles in a Maximal Planar Graph with Small Number of Vertices

146   0   0.0 ( 0 )
 نشر من قبل Addisu Paulos
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Hakimi and Schmeichel determined a sharp lower bound for the number of cycles of length 4 in a maximal planar graph with $n$ vertices, $ngeq 5$. It has been shown that the bound is sharp for $n = 5,12$ and $ngeq 14$ vertices. However, it was only conjectured by the authors about the minimum number of cycles of length 4 for maximal planar graphs with the remaining small vertex numbers. In this note we confirm their conjecture.

قيم البحث

اقرأ أيضاً

For a fixed planar graph $H$, let $operatorname{mathbf{N}}_{mathcal{P}}(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. In the case when $H$ is a cycle, the asymptotic value of $operatorname{mathbf{N}}_{mathcal{P}}(n,C _m)$ is currently known for $min{3,4,5,6,8}$. In this note, we extend this list by establishing $operatorname{mathbf{N}}_{mathcal{P}}(n,C_{10})sim(n/5)^5$ and $operatorname{mathbf{N}}_{mathcal{P}}(n,C_{12})sim(n/6)^6$. We prove this by answering the following question for $min{5,6}$, which is interesting in its own right: which probability mass $mu$ on the edges of some clique maximizes the probability that $m$ independent samples from $mu$ form an $m$-cycle?
141 - Xiaonan Liu , Xingxing Yu 2021
Whitney proved in 1931 that 4-connected planar triangulations are Hamiltonian. Hakimi, Schmeichel, and Thomassen conjectured in 1979 that if $G$ is a 4-connected planar triangulation with $n$ vertices then $G$ contains at least $2(n-2)(n-4)$ Hamilton ian cycles, with equality if and only if $G$ is a double wheel. On the other hand, a recent result of Alahmadi, Aldred, and Thomassen states that there are exponentially many Hamiltonian cycles in 5-connected planar triangulations. In this paper, we consider 4-connected planar $n$-vertex triangulations $G$ that do not have too many separating 4-cycles or have minimum degree 5. We show that if $G$ has $O(n/{log}_2 n)$ separating 4-cycles then $G$ has $Omega(n^2)$ Hamiltonian cycles, and if $delta(G)ge 5$ then $G$ has $2^{Omega(n^{1/4})}$ Hamiltonian cycles. Both results improve previous work. Moreover, the proofs involve a double wheel structure, providing further evidence to the above conjecture.
Finding the maximum number of induced cycles of length $k$ in a graph on $n$ vertices has been one of the most intriguing open problems of Extremal Graph Theory. Recently Balogh, Hu, Lidick{y} and Pfender answered the question in the case $k=5$. In t his paper we determine precisely, for all sufficiently large $n$, the maximum number of induced $5$-cycles that an $n$-vertex planar graph can contain.
Let $f(n,H)$ denote the maximum number of copies of $H$ possible in an $n$-vertex planar graph. The function $f(n,H)$ has been determined when $H$ is a cycle of length $3$ or $4$ by Hakimi and Schmeichel and when $H$ is a complete bipartite graph wit h smaller part of size 1 or 2 by Alon and Caro. We determine $f(n,H)$ exactly in the case when $H$ is a path of length 3.
Let $f(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. The order of magnitude of $f(n,P_k)$, where $P_k$ is a path of length $k$, is $n^{{lfloor{frac{k}{2}}rfloor}+1}$. In this paper we determine the asymptotic value o f $f(n,P_4)$ and give conjectures for longer paths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا