ترغب بنشر مسار تعليمي؟ اضغط هنا

The numbers of edges of 5-polytopes with a given number of vertices

213   0   0.0 ( 0 )
 نشر من قبل Satoshi Murai
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A basic combinatorial invariant of a convex polytope $P$ is its $f$-vector $f(P)=(f_0,f_1,dots,f_{dim P-1})$, where $f_i$ is the number of $i$-dimensional faces of $P$. Steinitz characterized all possible $f$-vectors of $3$-polytopes and Grunbaum characterized the pairs given by the first two entries of the $f$-vectors of $4$-polytopes. In this paper, we characterize the pairs given by the first two entries of the $f$-vectors of $5$-polytopes. The same result was also proved by Pineda-Villavicencio, Ugon and Yost independently.

قيم البحث

اقرأ أيضاً

For $ngeq 3$, let $r=r(n)geq 3$ be an integer. A hypergraph is $r$-uniform if each edge is a set of $r$ vertices, and is said to be linear if two edges intersect in at most one vertex. In this paper, the number of linear $r$-uniform hypergraphs on $n toinfty$ vertices is determined asymptotically when the number of edges is $m(n)=o(r^{-3}n^{ frac32})$. As one application, we find the probability of linearity for the independent-edge model of random $r$-uniform hypergraph when the expected number of edges is $o(r^{-3}n^{ frac32})$. We also find the probability that a random $r$-uniform linear hypergraph with a given number of edges contains a given subhypergraph.
An edge-colored connected graph $G$ is properly connected if between every pair of distinct vertices, there exists a path that no two adjacent edges have a same color. Fujita (2019) introduced the optimal proper connection number ${mathrm{pc}_{mathrm {opt}}}(G)$ for a monochromatic connected graph $G$, to make a connected graph properly connected efficiently. More precisely, ${mathrm{pc}_{mathrm{opt}}}(G)$ is the smallest integer $p+q$ when one converts a given monochromatic graph $G$ into a properly connected graph by recoloring $p$ edges with $q$ colors. In this paper, we show that ${mathrm{pc}_{mathrm{opt}}}(G)$ has an upper bound in terms of the independence number $alpha(G)$. Namely, we prove that for a connected graph $G$, ${mathrm{pc}_{mathrm{opt}}}(G)le frac{5alpha(G)-1}{2}$. Moreoevr, for the case $alpha(G)leq 3$, we improve the upper bound to $4$, which is tight.
81 - Xihe Li , Ligong Wang 2018
Given two graphs $G$ and $H$, the $k$-colored Gallai-Ramsey number $gr_k(G : H)$ is defined to be the minimum integer $n$ such that every $k$-coloring of the complete graph on $n$ vertices contains either a rainbow copy of $G$ or a monochromatic copy of $H$. In this paper, we consider $gr_k(K_3 : H)$ where $H$ is a connected graph with five vertices and at most six edges. There are in total thirteen graphs in this graph class, and the Gallai-Ramsey numbers for some of them have been studied step by step in several papers. We determine all the Gallai-Ramsey numbers for the remaining graphs, and we also obtain some related results for a class of unicyclic graphs.
Hakimi and Schmeichel determined a sharp lower bound for the number of cycles of length 4 in a maximal planar graph with $n$ vertices, $ngeq 5$. It has been shown that the bound is sharp for $n = 5,12$ and $ngeq 14$ vertices. However, it was only con jectured by the authors about the minimum number of cycles of length 4 for maximal planar graphs with the remaining small vertex numbers. In this note we confirm their conjecture.
Given a digraph $D$ with $m$ arcs and a bijection $tau: A(D)rightarrow {1, 2, ldots, m}$, we say $(D, tau)$ is an antimagic orientation of a graph $G$ if $D$ is an orientation of $G$ and no two vertices in $D$ have the same vertex-sum under $tau$, wh ere the vertex-sum of a vertex $u$ in $D$ under $tau$ is the sum of labels of all arcs entering $u$ minus the sum of labels of all arcs leaving $u$. Hefetz, M{u}tze, and Schwartz in 2010 initiated the study of antimagic orientations of graphs, and conjectured that every connected graph admits an antimagic orientation. This conjecture seems hard, and few related results are known. However, it has been verified to be true for regular graphs, biregular bipartite graphs, and graphs with large maximum degree. In this paper, we establish more evidence for the aforementioned conjecture by studying antimagic orientations of graphs $G$ with independence number at least $|V(G)|/2$ or at most four. We obtain several results. The method we develop in this paper may shed some light on attacking the aforementioned conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا