ﻻ يوجد ملخص باللغة العربية
We prove that every digraph of independence number at most 2 and arc-connectivity at least 2 has an out-branching $B^+$ and an in-branching $B^-$ which are arc-disjoint (we call such branchings good pair). This is best possible in terms of the arc-connectivity as there are infinitely many strong digraphs with independence number 2 and arbitrarily high minimum in-and out-degrees that have good no pair. The result settles a conjecture by Thomassen for digraphs of independence number 2. We prove that every digraph on at most 6 vertices and arc-connectivity at least 2 has a good pair and give an example of a 2-arc-strong digraph $D$ on 10 vertices with independence number 4 that has no good pair. We also show that there are infinitely many digraphs with independence number 7 and arc-connectivity 2 that have no good pair. Finally we pose a number of open problems.
A digraph $D=(V, A)$ has a good pair at a vertex $r$ if $D$ has a pair of arc-disjoint in- and out-branchings rooted at $r$. Let $T$ be a digraph with $t$ vertices $u_1,dots , u_t$ and let $H_1,dots H_t$ be digraphs such that $H_i$ has vertices $u_{i
Given integers $k$ and $m$, we construct a $G$-arc-transitive graph of valency $k$ and an $L$-arc-transitive oriented digraph of out-valency $k$ such that $G$ and $L$ both admit blocks of imprimitivity of size $m$.
In 1985, Mader conjectured the existence of a function $f$ such that every digraph with minimum out-degree at least $f(k)$ contains a subdivision of the transitive tournament of order $k$. This conjecture is still completely open, as the existence of
A detailed description of the structure of two-ended arc-transitive digraphs is given. It is also shown that several sets of conditions, involving such concepts as Property Z, local quasi-primitivity and prime out-valency, imply that an arc-transitiv
A dicut in a directed graph is a cut for which all of its edges are directed to a common side of the cut. A famous theorem of Lucchesi and Younger states that in every finite digraph the least size of a set of edges meeting every non-empty dicut equa