ﻻ يوجد ملخص باللغة العربية
Sparse tensor best rank-1 approximation (BR1Approx), which is a sparsity generalization of the dense tensor BR1Approx, and is a higher-order extension of the sparse matrix BR1Approx, is one of the most important problems in sparse tensor decomposition and related problems arising from statistics and machine learning. By exploiting the multilinearity as well as the sparsity structure of the problem, four approximation algorithms are proposed, which are easily implemented, of low computational complexity, and can serve as initial procedures for iterative algorithms. In addition, theoretically guaranteed worst-case approximation lower bounds are proved for all the algorithms. We provide numerical experiments on synthetic and real data to illustrate the effectiveness of the proposed algorithms.
The paper is concerned with methods for computing the best low multilinear rank approximation of large and sparse tensors. Krylov-type methods have been used for this problem; here blo
The problem of partitioning a large and sparse tensor is considered, where the tensor consists of a sequence of adjacency matrices. Theory is developed that is a generalization of spectral graph partitioning. A best rank-$(2,2,lambda)$ approximation
New algorithms are proposed for the Tucker approximation of a 3-tensor, that access it using only the tensor-by-vector-by-vector multiplication subroutine. In the matrix case, Krylov methods are methods of choice to approximate the dominant column an
We propose practical algorithms for entrywise $ell_p$-norm low-rank approximation, for $p = 1$ or $p = infty$. The proposed framework, which is non-convex and gradient-based, is easy to implement and typically attains better approximations, faster, t
Designing an optimal deep neural network for a given task is important and challenging in many machine learning applications. To address this issue, we introduce a self-adaptive algorithm: the adaptive network enhancement (ANE) method, written as loo