ﻻ يوجد ملخص باللغة العربية
New algorithms are proposed for the Tucker approximation of a 3-tensor, that access it using only the tensor-by-vector-by-vector multiplication subroutine. In the matrix case, Krylov methods are methods of choice to approximate the dominant column and row subspaces of a sparse or structured matrix given through the matrix-by-vector multiplication subroutine. Using the Wedderburn rank reduction formula, we propose an algorithm of matrix approximation that computes Krylov subspaces and allows generalization to the tensor case. Several variants of proposed tensor algorithms differ by pivoting strategies, overall cost and quality of approximation. By convincing numerical experiments we show that the proposed methods are faster and more accurate than the minimal Krylov recursion, proposed recently by Elden and Savas.
We propose a new method for the approximate solution of the Lyapunov equation with rank-$1$ right-hand side, which is based on extended rational Krylov subspace approximation with adaptively computed shifts. The shift selection is obtained from the c
We study the use of Krylov subspace recycling for the solution of a sequence of slowly-changing families of linear systems, where each family consists of shifted linear systems that differ in the coefficient matrix only by multiples of the identity.
Sparse tensor best rank-1 approximation (BR1Approx), which is a sparsity generalization of the dense tensor BR1Approx, and is a higher-order extension of the sparse matrix BR1Approx, is one of the most important problems in sparse tensor decompositio
We develop K$omega$, an open-source linear algebra library for the shifted Krylov subspace methods. The methods solve a set of shifted linear equations $(z_k I-H)x^{(k)}=b, (k=0,1,2,...)$ for a given matrix $H$ and a vector $b$, simultaneously. The l
Low-rank tensor recovery problems have been widely studied in many applications of signal processing and machine learning. Tucker decomposition is known as one of the most popular decompositions in the tensor framework. In recent years, researchers h