ﻻ يوجد ملخص باللغة العربية
Railway systems require regular manual maintenance, a large part of which is dedicated to inspecting track deformation. Such deformation might severely impact trains runtime security, whereas such inspections remain costly for both finance and human resources. Therefore, a more precise and efficient approach to detect railway track deformation is in urgent need. In this paper, we showcase an application framework for predicting vertical track irregularity, based on a real-world, large-scale dataset produced by several operating railways in China. We have conducted extensive experiments on various machine learning & ensemble learning algorithms in an effort to maximize the models capability in capturing any irregularity. We also proposed a novel approach for handling imbalanced data in multivariate time series prediction tasks with adaptive data sampling and penalized loss. Such an approach has proven to reduce models sensitivity to the imbalanced target domain, thus improving its performance in predicting rare extreme values.
Systems of interacting agents can often be modeled as contextual games, where the context encodes additional information, beyond the control of any agent (e.g. weather for traffic and fiscal policy for market economies). In such systems, the most lik
Despite the success of deep neural networks (DNNs) in image classification tasks, the human-level performance relies on massive training data with high-quality manual annotations, which are expensive and time-consuming to collect. There exist many in
Learning how to act when there are many available actions in each state is a challenging task for Reinforcement Learning (RL) agents, especially when many of the actions are redundant or irrelevant. In such cases, it is sometimes easier to learn whic
The dynamic ensemble selection of classifiers is an effective approach for processing label-imbalanced data classifications. However, such a technique is prone to overfitting, owing to the lack of regularization methods and the dependence of the afor
Continual lifelong learning requires an agent or model to learn many sequentially ordered tasks, building on previous knowledge without catastrophically forgetting it. Much work has gone towards preventing the default tendency of machine learning mod