ﻻ يوجد ملخص باللغة العربية
The dynamic ensemble selection of classifiers is an effective approach for processing label-imbalanced data classifications. However, such a technique is prone to overfitting, owing to the lack of regularization methods and the dependence of the aforementioned technique on local geometry. In this study, focusing on binary imbalanced data classification, a novel dynamic ensemble method, namely adaptive ensemble of classifiers with regularization (AER), is proposed, to overcome the stated limitations. The method solves the overfitting problem through implicit regularization. Specifically, it leverages the properties of stochastic gradient descent to obtain the solution with the minimum norm, thereby achieving regularization; furthermore, it interpolates the ensemble weights by exploiting the global geometry of data to further prevent overfitting. According to our theoretical proofs, the seemingly complicated AER paradigm, in addition to its regularization capabilities, can actually reduce the asymptotic time and memory complexities of several other algorithms. We evaluate the proposed AER method on seven benchmark imbalanced datasets from the UCI machine learning repository and one artificially generated GMM-based dataset with five variations. The results show that the proposed algorithm outperforms the major existing algorithms based on multiple metrics in most cases, and two hypothesis tests (McNemars and Wilcoxon tests) verify the statistical significance further. In addition, the proposed method has other preferred properties such as special advantages in dealing with highly imbalanced data, and it pioneers the research on the regularization for dynamic ensemble methods.
Real-world large-scale datasets are heteroskedastic and imbalanced -- labels have varying levels of uncertainty and label distributions are long-tailed. Heteroskedasticity and imbalance challenge deep learning algorithms due to the difficulty of dist
Recent researches have shown that deep forest ensemble achieves a considerable increase in classification accuracy compared with the general ensemble learning methods, especially when the training set is small. In this paper, we take advantage of dee
A recent technique of randomized smoothing has shown that the worst-case (adversarial) $ell_2$-robustness can be transformed into the average-case Gaussian-robustness by smoothing a classifier, i.e., by considering the averaged prediction over Gaussi
Recently, a variety of regularization techniques have been widely applied in deep neural networks, such as dropout, batch normalization, data augmentation, and so on. These methods mainly focus on the regularization of weight parameters to prevent ov
Extracting actionable intelligence from distributed, heterogeneous, correlated and high-dimensional data sources requires run-time processing and learning both locally and globally. In the last decade, a large number of meta-learning techniques have