ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Learn from Noisy Labeled Data

108   0   0.0 ( 0 )
 نشر من قبل Junnan Li Mr
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the success of deep neural networks (DNNs) in image classification tasks, the human-level performance relies on massive training data with high-quality manual annotations, which are expensive and time-consuming to collect. There exist many inexpensive data sources on the web, but they tend to contain inaccurate labels. Training on noisy labeled datasets causes performance degradation because DNNs can easily overfit to the label noise. To overcome this problem, we propose a noise-tolerant training algorithm, where a meta-learning update is performed prior to conventional gradient update. The proposed meta-learning method simulates actual training by generating synthetic noisy labels, and train the model such that after one gradient update using each set of synthetic noisy labels, the model does not overfit to the specific noise. We conduct extensive experiments on the noisy CIFAR-10 dataset and the Clothing1M dataset. The results demonstrate the advantageous performance of the proposed method compared to several state-of-the-art baselines.



قيم البحث

اقرأ أيضاً

A similarity label indicates whether two instances belong to the same class while a class label shows the class of the instance. Without class labels, a multi-class classifier could be learned from similarity-labeled pairwise data by meta classificat ion learning. However, since the similarity label is less informative than the class label, it is more likely to be noisy. Deep neural networks can easily remember noisy data, leading to overfitting in classification. In this paper, we propose a method for learning from only noisy-similarity-labeled data. Specifically, to model the noise, we employ a noise transition matrix to bridge the class-posterior probability between clean and noisy data. We further estimate the transition matrix from only noisy data and build a novel learning system to learn a classifier which can assign noise-free class labels for instances. Moreover, we theoretically justify how our proposed method generalizes for learning classifiers. Experimental results demonstrate the superiority of the proposed method over the state-of-the-art method on benchmark-simulated and real-world noisy-label datasets.
Continual lifelong learning requires an agent or model to learn many sequentially ordered tasks, building on previous knowledge without catastrophically forgetting it. Much work has gone towards preventing the default tendency of machine learning mod els to catastrophically forget, yet virtually all such work involves manually-designed solutions to the problem. We instead advocate meta-learning a solution to catastrophic forgetting, allowing AI to learn to continually learn. Inspired by neuromodulatory processes in the brain, we propose A Neuromodulated Meta-Learning Algorithm (ANML). It differentiates through a sequential learning process to meta-learn an activation-gating function that enables context-dependent selective activation within a deep neural network. Specifically, a neuromodulatory (NM) neural network gates the forward pass of another (otherwise normal) neural network called the prediction learning network (PLN). The NM network also thus indirectly controls selective plasticity (i.e. the backward pass of) the PLN. ANML enables continual learning without catastrophic forgetting at scale: it produces state-of-the-art continual learning performance, sequentially learning as many as 600 classes (over 9,000 SGD updates).
Noisy labeled data is more a norm than a rarity for self-generated content that is continuously published on the web and social media. Due to privacy concerns and governmental regulations, such a data stream can only be stored and used for learning p urposes in a limited duration. To overcome the noise in this on-line scenario we propose QActor which novel combines: the selection of supposedly clean samples via quality models and actively querying an oracle for the most informative true labels. While the former can suffer from low data volumes of on-line scenarios, the latter is constrained by the availability and costs of human experts. QActor swiftly combines the merits of quality models for data filtering and oracle queries for cleaning the most informative data. The objective of QActor is to leverage the stringent oracle budget to robustly maximize the learning accuracy. QActor explores various strategies combining different query allocations and uncertainty measures. A central feature of QActor is to dynamically adjust the query limit according to the learning loss for each data batch. We extensively evaluate different image datasets fed into the classifier that can be standard machine learning (ML) models or deep neural networks (DNN) with noise label ratios ranging between 30% and 80%. Our results show that QActor can nearly match the optimal accuracy achieved using only clean data at the cost of at most an additional 6% of ground truth data from the oracle.
In recent years deep reinforcement learning (RL) systems have attained superhuman performance in a number of challenging task domains. However, a major limitation of such applications is their demand for massive amounts of training data. A critical p resent objective is thus to develop deep RL methods that can adapt rapidly to new tasks. In the present work we introduce a novel approach to this challenge, which we refer to as deep meta-reinforcement learning. Previous work has shown that recurrent networks can support meta-learning in a fully supervised context. We extend this approach to the RL setting. What emerges is a system that is trained using one RL algorithm, but whose recurrent dynamics implement a second, quite separate RL procedure. This second, learned RL algorithm can differ from the original one in arbitrary ways. Importantly, because it is learned, it is configured to exploit structure in the training domain. We unpack these points in a series of seven proof-of-concept experiments, each of which examines a key aspect of deep meta-RL. We consider prospects for extending and scaling up the approach, and also point out some potentially important implications for neuroscience.
In many applications labeled data is not readily available, and needs to be collected via pain-staking human supervision. We propose a rule-exemplar method for collecting human supervision to combine the efficiency of rules with the quality of instan ce labels. The supervision is coupled such that it is both natural for humans and synergistic for learning. We propose a training algorithm that jointly denoises rules via latent coverage variables, and trains the model through a soft implication loss over the coverage and label variables. The denoised rules and trained model are used jointly for inference. Empirical evaluation on five different tasks shows that (1) our algorithm is more accurate than several existing methods of learning from a mix of clean and noisy supervision, and (2) the coupled rule-exemplar supervision is effective in denoising rules.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا