ﻻ يوجد ملخص باللغة العربية
Growing use of machine learning in policy and social impact settings have raised concerns for fairness implications, especially for racial minorities. These concerns have generated considerable interest among machine learning and artificial intelligence researchers, who have developed new methods and established theoretical bounds for improving fairness, focusing on the source data, regularization and model training, or post-hoc adjustments to model scores. However, little work has studied the practical trade-offs between fairness and accuracy in real-world settings to understand how these bounds and methods translate into policy choices and impact on society. Our empirical study fills this gap by investigating the impact of mitigating disparities on accuracy, focusing on the common context of using machine learning to inform benefit allocation in resource-constrained programs across education, mental health, criminal justice, and housing safety. Here we describe applied work in which we find fairness-accuracy trade-offs to be negligible in practice. In each setting studied, explicitly focusing on achieving equity and using our proposed post-hoc disparity mitigation methods, fairness was substantially improved without sacrificing accuracy. This observation was robust across policy contexts studied, scale of resources available for intervention, time, and relative size of the protected groups. These empirical results challenge a commonly held assumption that reducing disparities either requires accepting an appreciable drop in accuracy or the development of novel, complex methods, making reducing disparities in these applications more practical.
In the application of machine learning to real-life decision-making systems, e.g., credit scoring and criminal justice, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness. The commonly used stra
As multi-task models gain popularity in a wider range of machine learning applications, it is becoming increasingly important for practitioners to understand the fairness implications associated with those models. Most existing fairness literature fo
Since the global spread of Covid-19 began to overwhelm the attempts of governments to conduct manual contact-tracing, there has been much interest in using the power of mobile phones to automate the contact-tracing process through the development of
Kearns et al. [2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positiv
Explainability is a crucial requirement for effectiveness as well as the adoption of Machine Learning (ML) models supporting decisions in high-stakes public policy areas such as health, criminal justice, education, and employment, While the field of