ترغب بنشر مسار تعليمي؟ اضغط هنا

Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic Multi-Objective Approach

120   0   0.0 ( 0 )
 نشر من قبل Suyun Liu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In the application of machine learning to real-life decision-making systems, e.g., credit scoring and criminal justice, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness. The commonly used strategy in fair machine learning is to include fairness as a constraint or a penalization term in the minimization of the prediction loss, which ultimately limits the information given to decision-makers. In this paper, we introduce a new approach to handle fairness by formulating a stochastic multi-objective optimization problem for which the corresponding Pareto fronts uniquely and comprehensively define the accuracy-fairness trade-offs. We have then applied a stochastic approximation-type method to efficiently obtain well-spread and accurate Pareto fronts, and by doing so we can handle training data arriving in a streaming way.



قيم البحث

اقرأ أيضاً

As multi-task models gain popularity in a wider range of machine learning applications, it is becoming increasingly important for practitioners to understand the fairness implications associated with those models. Most existing fairness literature fo cuses on learning a single task more fairly, while how ML fairness interacts with multiple tasks in the joint learning setting is largely under-explored. In this paper, we are concerned with how group fairness (e.g., equal opportunity, equalized odds) as an ML fairness concept plays out in the multi-task scenario. In multi-task learning, several tasks are learned jointly to exploit task correlations for a more efficient inductive transfer. This presents a multi-dimensional Pareto frontier on (1) the trade-off between group fairness and accuracy with respect to each task, as well as (2) the trade-offs across multiple tasks. We aim to provide a deeper understanding on how group fairness interacts with accuracy in multi-task learning, and we show that traditional approaches that mainly focus on optimizing the Pareto frontier of multi-task accuracy might not perform well on fairness goals. We propose a new set of metrics to better capture the multi-dimensional Pareto frontier of fairness-accuracy trade-offs uniquely presented in a multi-task learning setting. We further propose a Multi-Task-Aware Fairness (MTA-F) approach to improve fairness in multi-task learning. Experiments on several real-world datasets demonstrate the effectiveness of our proposed approach.
Growing use of machine learning in policy and social impact settings have raised concerns for fairness implications, especially for racial minorities. These concerns have generated considerable interest among machine learning and artificial intellige nce researchers, who have developed new methods and established theoretical bounds for improving fairness, focusing on the source data, regularization and model training, or post-hoc adjustments to model scores. However, little work has studied the practical trade-offs between fairness and accuracy in real-world settings to understand how these bounds and methods translate into policy choices and impact on society. Our empirical study fills this gap by investigating the impact of mitigating disparities on accuracy, focusing on the common context of using machine learning to inform benefit allocation in resource-constrained programs across education, mental health, criminal justice, and housing safety. Here we describe applied work in which we find fairness-accuracy trade-offs to be negligible in practice. In each setting studied, explicitly focusing on achieving equity and using our proposed post-hoc disparity mitigation methods, fairness was substantially improved without sacrificing accuracy. This observation was robust across policy contexts studied, scale of resources available for intervention, time, and relative size of the protected groups. These empirical results challenge a commonly held assumption that reducing disparities either requires accepting an appreciable drop in accuracy or the development of novel, complex methods, making reducing disparities in these applications more practical.
To date, there has been no formal study of the statistical cost of interpretability in machine learning. As such, the discourse around potential trade-offs is often informal and misconceptions abound. In this work, we aim to initiate a formal study o f these trade-offs. A seemingly insurmountable roadblock is the lack of any agreed upon definition of interpretability. Instead, we propose a shift in perspective. Rather than attempt to define interpretability, we propose to model the emph{act} of emph{enforcing} interpretability. As a starting point, we focus on the setting of empirical risk minimization for binary classification, and view interpretability as a constraint placed on learning. That is, we assume we are given a subset of hypothesis that are deemed to be interpretable, possibly depending on the data distribution and other aspects of the context. We then model the act of enforcing interpretability as that of performing empirical risk minimization over the set of interpretable hypotheses. This model allows us to reason about the statistical implications of enforcing interpretability, using known results in statistical learning theory. Focusing on accuracy, we perform a case analysis, explaining why one may or may not observe a trade-off between accuracy and interpretability when the restriction to interpretable classifiers does or does not come at the cost of some excess statistical risk. We close with some worked examples and some open problems, which we hope will spur further theoretical development around the tradeoffs involved in interpretability.
In the federated learning setting, multiple clients jointly train a model under the coordination of the central server, while the training data is kept on the client to ensure privacy. Normally, inconsistent distribution of data across different devi ces in a federated network and limited communication bandwidth between end devices impose both statistical heterogeneity and expensive communication as major challenges for federated learning. This paper proposes an algorithm to achieve more fairness and accuracy in federated learning (FedFa). It introduces an optimization scheme that employs a double momentum gradient, thereby accelerating the convergence rate of the model. An appropriate weight selection algorithm that combines the information quantity of training accuracy and training frequency to measure the weights is proposed. This procedure assists in addressing the issue of unfairness in federated learning due to preferences for certain clients. Our results show that the proposed FedFa algorithm outperforms the baseline algorithm in terms of accuracy and fairness.
As machine learning algorithms grow in popularity and diversify to many industries, ethical and legal concerns regarding their fairness have become increasingly relevant. We explore the problem of algorithmic fairness, taking an information-theoretic view. The maximal correlation framework is introduced for expressing fairness constraints and shown to be capable of being used to derive regularizers that enforce independence and separation-based fairness criteria, which admit optimization algorithms for both discrete and continuous variables which are more computationally efficient than existing algorithms. We show that these algorithms provide smooth performance-fairness tradeoff curves and perform competitively with state-of-the-art methods on both discrete datasets (COMPAS, Adult) and continuous datasets (Communities and Crimes).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا