ترغب بنشر مسار تعليمي؟ اضغط هنا

Explainable Machine Learning for Public Policy: Use Cases, Gaps, and Research Directions

152   0   0.0 ( 0 )
 نشر من قبل Kasun Amarasinghe
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Explainability is a crucial requirement for effectiveness as well as the adoption of Machine Learning (ML) models supporting decisions in high-stakes public policy areas such as health, criminal justice, education, and employment, While the field of explainable has expanded in recent years, much of this work has not taken real-world needs into account. A majority of proposed methods use benchmark datasets with generic explainability goals without clear use-cases or intended end-users. As a result, the applicability and effectiveness of this large body of theoretical and methodological work on real-world applications is unclear. This paper focuses on filling this void for the domain of public policy. We develop a taxonomy of explainability use-cases within public policy problems; for each use-case, we define the end-users of explanations and the specific goals explainability has to fulfill; third, we map existing work to these use-cases, identify gaps, and propose research directions to fill those gaps in order to have a practical societal impact through ML.


قيم البحث

اقرأ أيضاً

The application of machine learning to support the processing of large datasets holds promise in many industries, including financial services. However, practical issues for the full adoption of machine learning remain with the focus being on underst anding and being able to explain the decisions and predictions made by complex models. In this paper, we explore explainability methods in the domain of real-time fraud detection by investigating the selection of appropriate background datasets and runtime trade-offs on both supervised and unsupervised models.
Machine learning (ML) is increasingly being adopted in a wide variety of application domains. Usually, a well-performing ML model, especially, emerging deep neural network model, relies on a large volume of training data and high-powered computationa l resources. The need for a vast volume of available data raises serious privacy concerns because of the risk of leakage of highly privacy-sensitive information and the evolving regulatory environments that increasingly restrict access to and use of privacy-sensitive data. Furthermore, a trained ML model may also be vulnerable to adversarial attacks such as membership/property inference attacks and model inversion attacks. Hence, well-designed privacy-preserving ML (PPML) solutions are crucial and have attracted increasing research interest from academia and industry. More and more efforts of PPML are proposed via integrating privacy-preserving techniques into ML algorithms, fusing privacy-preserving approaches into ML pipeline, or designing various privacy-preserving architectures for existing ML systems. In particular, existing PPML arts cross-cut ML, system, security, and privacy; hence, there is a critical need to understand state-of-art studies, related challenges, and a roadmap for future research. This paper systematically reviews and summarizes existing privacy-preserving approaches and proposes a PGU model to guide evaluation for various PPML solutions through elaborately decomposing their privacy-preserving functionalities. The PGU model is designed as the triad of Phase, Guarantee, and technical Utility. Furthermore, we also discuss the unique characteristics and challenges of PPML and outline possible directions of future work that benefit a wide range of research communities among ML, distributed systems, security, and privacy areas.
The Vehicle Routing Problem (VRP) is one of the most intensively studied combinatorial optimisation problems for which numerous models and algorithms have been proposed. To tackle the complexities, uncertainties and dynamics involved in real-world VR P applications, Machine Learning (ML) methods have been used in combination with analytical approaches to enhance problem formulations and algorithmic performance across different problem solving scenarios. However, the relevant papers are scattered in several traditional research fields with very different, sometimes confusing, terminologies. This paper presents a first, comprehensive review of hybrid methods that combine analytical techniques with ML tools in addressing VRP problems. Specifically, we review the emerging research streams on ML-assisted VRP modelling and ML-assisted VRP optimisation. We conclude that ML can be beneficial in enhancing VRP modelling, and improving the performance of algorithms for both online and offline VRP optimisations. Finally, challenges and future opportunities of VRP research are discussed.
Machine learning (ML) currently exerts an outsized influence on the world, increasingly affecting communities and institutional practices. It is therefore critical that we question vague conceptions of the field as value-neutral or universally benefi cial, and investigate what specific values the field is advancing. In this paper, we present a rigorous examination of the values of the field by quantitatively and qualitatively analyzing 100 highly cited ML papers published at premier ML conferences, ICML and NeurIPS. We annotate key features of papers which reveal their values: how they justify their choice of project, which aspects they uplift, their consideration of potential negative consequences, and their institutional affiliations and funding sources. We find that societal needs are typically very loosely connected to the choice of project, if mentioned at all, and that consideration of negative consequences is extremely rare. We identify 67 values that are uplifted in machine learning research, and, of these, we find that papers most frequently justify and assess themselves based on performance, generalization, efficiency, researcher understanding, novelty, and building on previous work. We present extensive textual evidence and analysis of how these values are operationalized. Notably, we find that each of these top values is currently being defined and applied with assumptions and implications generally supporting the centralization of power. Finally, we find increasingly close ties between these highly cited papers and tech companies and elite universities.
Growing use of machine learning in policy and social impact settings have raised concerns for fairness implications, especially for racial minorities. These concerns have generated considerable interest among machine learning and artificial intellige nce researchers, who have developed new methods and established theoretical bounds for improving fairness, focusing on the source data, regularization and model training, or post-hoc adjustments to model scores. However, little work has studied the practical trade-offs between fairness and accuracy in real-world settings to understand how these bounds and methods translate into policy choices and impact on society. Our empirical study fills this gap by investigating the impact of mitigating disparities on accuracy, focusing on the common context of using machine learning to inform benefit allocation in resource-constrained programs across education, mental health, criminal justice, and housing safety. Here we describe applied work in which we find fairness-accuracy trade-offs to be negligible in practice. In each setting studied, explicitly focusing on achieving equity and using our proposed post-hoc disparity mitigation methods, fairness was substantially improved without sacrificing accuracy. This observation was robust across policy contexts studied, scale of resources available for intervention, time, and relative size of the protected groups. These empirical results challenge a commonly held assumption that reducing disparities either requires accepting an appreciable drop in accuracy or the development of novel, complex methods, making reducing disparities in these applications more practical.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا