ﻻ يوجد ملخص باللغة العربية
We investigate wavepacket dynamics across supercritical barriers for the Klein-Gordon and Dirac equations. Our treatment is based on a multiple scattering expansion (MSE). For spin-0 particles, the MSE diverges, rendering invalid the use of the usual connection formulas for the scattering basis functions. In a time-dependent formulation, the divergent character of the MSE naturally accounts for charge creation at the barrier boundaries. In the Dirac case, the MSE converges and no charge is created. We show that this time-dependent charge behavior dynamics can adequately explain the Klein paradox in a first quantized setting. We further compare our semi-analytical wavepacket approach to exact finite-difference solutions of the relativistic wave equations.
The dynamics of a particle in an expanding cavity is investigated in the Klein-Gordon framework in a regime in which the single particle picture remains valid. The cavity expansion represents a time-dependent boundary condition for the relativistic w
We study the thermodynamic quantities such as the Helmholtz free energy, the mean energy and the specific heat for both the Klein-Gordon, and Dirac equations. Our analyze includes two main subsections: ($i$) statistical functions for the Klein-Gordon
We study the tunneling zone solutions of a one-dimensional electrostatic potential for the relativistic (Dirac to Klein-Gordon) wave equation when the incoming wave packet exhibits the possibility of being almost totally transmitted through the barri
Klein-Gordon equations describe the dynamics of waves/particles in sub-atomic scales. For nonlinear Klein-Gordon equations, their breather solutions are usually known as time periodic solutions with the vanishing spatial-boundary condition. The exist
The logical inference approach to quantum theory, proposed earlier [Ann. Phys. 347 (2014) 45-73], is considered in a relativistic setting. It is shown that the Klein-Gordon equation for a massive, charged, and spinless particle derives from the combi