ﻻ يوجد ملخص باللغة العربية
We study the tunneling zone solutions of a one-dimensional electrostatic potential for the relativistic (Dirac to Klein-Gordon) wave equation when the incoming wave packet exhibits the possibility of being almost totally transmitted through the barrier. The transmission probabilities, the phase times and the dwell times for the proposed relativistic dynamics are obtained and the conditions for the occurrence of accelerated tunneling transmission are all quantified. We show that, in some limiting cases, the analytical difficulties that arise when the stationary phase method is employed for obtaining phase (traversal) tunneling times are all overcome. Lessons concerning the phenomenology of the relativistic tunneling suggest revealing insights into condensed-matter experiments using electrostatic barriers for which the accelerated tunneling effect can be observed.
The transit times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Considering two identical particles symmetrically impinging on a one-dimensional barrier, we demo
We investigate wavepacket dynamics across supercritical barriers for the Klein-Gordon and Dirac equations. Our treatment is based on a multiple scattering expansion (MSE). For spin-0 particles, the MSE diverges, rendering invalid the use of the usual
We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden
Several recent attoclock experiments have investigated the fundamental question of a quantum mechanically induced time delay in tunneling ionization via extremely precise photoelectron momentum spectroscopy. The interpretations of those attoclock exp
We study the survival probability of moving relativistic unstable particles with definite momentum $vec{p} eq 0$. The amplitude of the survival probability of these particles is calculated using its integral representation. We found decay curves of