ﻻ يوجد ملخص باللغة العربية
The dynamics of a particle in an expanding cavity is investigated in the Klein-Gordon framework in a regime in which the single particle picture remains valid. The cavity expansion represents a time-dependent boundary condition for the relativistic wavefunction. We show that this expansion induces a non-local effect on the current density throughout the cavity. Our results indicate that a relativistic treatment still contains apparently spurious effects traditionally associated with the unbounded velocities inherent to non-relativistic solutions obtained from the Schroedinger equation. Possible reasons for this behaviour are discussed.
We investigate wavepacket dynamics across supercritical barriers for the Klein-Gordon and Dirac equations. Our treatment is based on a multiple scattering expansion (MSE). For spin-0 particles, the MSE diverges, rendering invalid the use of the usual
The relativistic quantum dynamics of the generalized Klein-Gordon (KG) oscillator having position-dependent mass in the G{o}del-type space-time is investigated. We have presented the generalized KG oscillator in this space-time, and discussed the eff
The one-dimensional effective-mass Klein-Gordon equation for the real, and non-textrm{PT}-symmetric/non-Hermitian generalized Morse potential is solved by taking a series expansion for the wave function. The energy eigenvalues, and the corresponding
We study the thermodynamic quantities such as the Helmholtz free energy, the mean energy and the specific heat for both the Klein-Gordon, and Dirac equations. Our analyze includes two main subsections: ($i$) statistical functions for the Klein-Gordon
Systems with non-Hermitian skin effects are very sensitive to the imposed boundary conditions and lattice size, and thus an important question is whether non-Hermitian skin effects can survive when deviating from the open boundary condition. To unvei