ﻻ يوجد ملخص باللغة العربية
The NASA LISA Study Team was tasked to study how NASA might support US scientists to participate and maximize the science return from the Laser Interferometer Space Antenna (LISA) mission. LISA is gravitational wave observatory led by ESA with NASA as a junior partner, and is scheduled to launch in 2034. Among our findings: LISA science productivity is greatly enhanced by a full-featured US science center and an open access data model. As other major missions have demonstrated, a science center acts as both a locus and an amplifier of research innovation, data analysis, user support, user training and user interaction. In its most basic function, a US Science Center could facilitate entry into LISA science by hosting a Data Processing Center and a portal for the US community to access LISA data products. However, an enhanced LISA Science Center could: support one of the parallel independent processing pipelines required for data product validation; stimulate the high level of research on data analysis that LISA demands; support users unfamiliar with a novel observatory; facilitate astrophysics and fundamental research; provide an interface into the subtleties of the instrument to validate extraordinary discoveries; train new users; and expand the research community through guest investigator, postdoc and student programs. Establishing a US LISA Science Center well before launch can have a beneficial impact on the participation of the broader astronomical community by providing training, hosting topical workshops, disseminating mock catalogs, software pipelines, and documentation. Past experience indicates that successful science centers are established several years before launch; this early adoption model may be especially relevant for a pioneering mission like LISA.
Recent gravitational-wave observations from the LIGO and Virgo observatories have brought a sense of great excitement to scientists and citizens the world over. Since September 2015,10 binary black hole coalescences and one binary neutron star coales
The Laser Interferometer Space Antenna (LISA) will open three decades of gravitational wave (GW) spectrum between 0.1 and 100 mHz, the mHz band. This band is expected to be the richest part of the GW spectrum, in types of sources, numbers of sources,
The science objectives of the LISA mission have been defined under the implicit assumption of a 4 yr continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of $approx 0.75$, which woul
The first terrestrial gravitational wave interferometers have dramatically underscored the scientific value of observing the Universe through an entirely different window, and of folding this new channel of information with traditional astronomical d
The past four years have seen a scientific revolution through the birth of a new field: gravitational-wave astronomy. The first detection of gravitational waves---recognised by the 2017 Nobel Prize in Physics---provided unprecedented tests of general