ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground-Based Gravitational-Wave Astronomy in Australia: 2019 White Paper

79   0   0.0 ( 0 )
 نشر من قبل Eric Thrane
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The past four years have seen a scientific revolution through the birth of a new field: gravitational-wave astronomy. The first detection of gravitational waves---recognised by the 2017 Nobel Prize in Physics---provided unprecedented tests of general relativity while unveiling a previously unknown class of massive black holes, thirty times more massive than the Sun. The subsequent detection of gravitational waves from a merging binary neutron star confirmed the hypothesised connection between binary neutron stars and short gamma-ray bursts while providing an independent measurement of the expansion of the Universe. The discovery enabled precision measurement of the speed of gravity while shedding light on the origin of heavy elements. At the time of writing, the Laser Interferometer Gravitational-wave Observatory (LIGO) and its European partner, Virgo, have published the detection of eleven gravitational-wave events. New, not-yet-published detections are announced on a nearly weekly basis. This fast-growing catalogue of gravitational-wave transients is expected to yield insights into a number of topics, from the equation of state of matter at supra-nuclear densities to the fate of massive stars. The science potential of 3G observatories is enormous, enabling measurements of gravitational waves from the edge of the Universe and precise determination of the neutron star equation of state. Australia is well-positioned to help develop the required technology. The Mid-term Review for the Decadal plan for Australian astronomy 2016-2025 should consider investment in a scoping study for an Australian Gravitational-Wave Pathfinder that develops and validates core technologies required for the global 3G detector network.

قيم البحث

اقرأ أيضاً

GHz radio astronomy has played a fundamental role in the recent dazzling discovery of GW170817, a neutron star (NS)-NS merger observed in both gravitational waves (GWs) and light at all wavelengths. Here we show how the expected progress in sensitivi ty of ground-based GW detectors over the next decade calls for U.S.-based GHz radio arrays to be improved beyond current levels. We discuss specifically how several new scientific opportunities would emerge in multi-messenger time-domain astrophysics if a next generation GHz radio facility with sensitivity and resolution $10times$ better than the current Jansky Very Large Array (VLA) were to work in tandem with ground-based GW detectors. These opportunities include probing the properties, structure, and size of relativistic jets and wide-angle ejecta from NS-NS mergers, as well as unraveling the physics of their progenitors via host galaxy studies.
Recent gravitational-wave observations from the LIGO and Virgo observatories have brought a sense of great excitement to scientists and citizens the world over. Since September 2015,10 binary black hole coalescences and one binary neutron star coales cence have been observed. They have provided remarkable, revolutionary insight into the gravitational Universe and have greatly extended the field of multi-messenger astronomy. At present, Advanced LIGO can see binary black hole coalescences out to redshift 0.6 and binary neutron star coalescences to redshift 0.05. This probes only a very small fraction of the volume of the observable Universe. However, current technologies can be extended to construct $3^mathrm{rd}$ Generation (3G) gravitational-wave observatories that would extend our reach to the very edge of the observable Universe. The event rates over such a large volume would be in the hundreds of thousands per year (i.e.tens per hour). Such 3G detectors would have a 10-fold improvement in strain sensitivity over the current generation of instruments, yielding signal-to-noise ratios of 1000 for events like those already seen. Several concepts are being studied for which engineering studies and reliable cost estimates will be developed in the next 5 years.
89 - Surajit Kalita 2020
In about last couple of decades, the inference of the violation of the Chandrasekhar mass-limit of white dwarfs from indirect observation is probably a revolutionary discovery in astronomy. Various researchers have already proposed different theories to explain this interesting phenomenon. However, such massive white dwarfs usually possess very little luminosity, and hence they, so far, cannot be detected directly by any observations. We have already proposed that the continuous gravitational wave may be one of the probes to detect them directly, and in the future, various space-based detectors such as LISA, DECIGO, and BBO, should be able to detect many of those white dwarfs (provided they behave like pulsars). In this paper, we address various timescales related to the emission of gravitational as well as dipole radiations. This exploration sets a timescale for the detectors to observe the massive white dwarfs.
We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrades astrophysical applications. We present a comprehensive study of the detectors tech nical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrades implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.
We combine hierarchical Bayesian modeling with a flow-based deep generative network, in order to demonstrate that one can efficiently constraint numerical gravitational wave (GW) population models at a previously intractable complexity. Existing tech niques for comparing data to simulation,such as discrete model selection and Gaussian process regression, can only be applied efficiently to moderate-dimension data. This limits the number of observable (e.g. chirp mass, spins.) and hyper-parameters (e.g. common envelope efficiency) one can use in a population inference. In this study, we train a network to emulate a phenomenological model with 6 observables and 4 hyper-parameters, use it to infer the properties of a simulated catalogue and compare the results to the phenomenological model. We find that a 10-layer network can emulate the phenomenological model accurately and efficiently. Our machine enables simulation-based GW population inferences to take on data at a new complexity level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا