ترغب بنشر مسار تعليمي؟ اضغط هنا

The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky

116   0   0.0 ( 0 )
 نشر من قبل Emanuele Berti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first terrestrial gravitational wave interferometers have dramatically underscored the scientific value of observing the Universe through an entirely different window, and of folding this new channel of information with traditional astronomical data for a multimessenger view. The Laser Interferometer Space Antenna (LISA) will broaden the reach of gravitational wave astronomy by conducting the first survey of the millihertz gravitational wave sky, detecting tens of thousands of individual astrophysical sources ranging from white-dwarf binaries in our own galaxy to mergers of massive black holes at redshifts extending beyond the epoch of reionization. These observations will inform - and transform - our understanding of the end state of stellar evolution, massive black hole birth, and the co-evolution of galaxies and black holes through cosmic time. LISA also has the potential to detect gravitational wave emission from elusive astrophysical sources such as intermediate-mass black holes as well as exotic cosmological sources such as inflationary fields and cosmic string cusps.

قيم البحث

اقرأ أيضاً

Following the selection of The Gravitational Universe by ESA, and the successful flight of LISA Pathfinder, the LISA Consortium now proposes a 4 year mission in response to ESAs call for missions for L3. The observatory will be based on three arms wi th six active laser links, between three identical spacecraft in a triangular formation separated by 2.5 million km. LISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using Gravitational Waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the infant Universe at TeV energy scales, has known sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales near the horizons of black holes, all the way to cosmological scales. The LISA mission will scan the entire sky as it follows behind the Earth in its orbit, obtaining both polarisations of the Gravitational Waves simultaneously, and will measure source parameters with astrophysically relevant sensitivity in a band from below $10^{-4},$Hz to above $10^{-1},$Hz.
We demonstrate a method to fully characterize mass-transferring double white dwarf (DWD) systems with a helium-rich (He) WD donor based on the mass--radius relationship for He WDs. Using a simulated Galactic population of DWDs, we show that donor and accretor masses can be inferred for up to $sim, 60$ systems observed by both Laser Interferometer Space Antenna (LISA) and Gaia. Half of these systems will have mass constraints $Delta,M_{rm{D}}lesssim0.2M_{odot}$ and $Delta,M_{rm{A}}lesssim2.3,M_{odot}$. We also show how the orbital frequency evolution due to astrophysical processes and gravitational radiation can be decoupled from the total orbital frequency evolution for up to $sim 50$ of these systems.
In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 Hz and 128 Hz with a range of spin-down between $-1.0 times 10^{-10}$ Hz/s and $+1.5 times 10^{-11}$ Hz/s, and was based on a hierarchical approach. The starting point was a set of short Fast Fourier Transforms (FFT), of length 8192 seconds, built from the calibrated strain data. Aggressive data cleaning, both in the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each dataset a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. Selected candidates have been subject to a follow-up by constructing a new set of longer FFTs followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, therefore we have set a population-based joint VSR2-VSR4 90$%$ confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 Hz and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about $10^{-24}$ and $2times 10^{-23}$ at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of $sim$2 with respect to the results of previous all-sky searches at frequencies below $80~mathrm{Hz}$.
Gravitational-wave radiometry is a powerful tool by which weak signals with unknown signal morphologies are recovered through a process of cross correlation. Radiometry has been used, e.g., to search for persistent signals from known neutron stars su ch as Scorpius X-1. In this paper, we demonstrate how a more ambitious search--for persistent signals from unknown neutron stars--can be efficiently carried out using folded data, in which an entire ~year-long observing run is represented as a single sidereal day. The all-sky, narrowband radiometer search described here will provide a computationally tractable means to uncover gravitational-wave signals from unknown, nearby neutron stars in binary systems, which can have modulation depths of ~0.1-2 Hz. It will simultaneously provide a sensitive search algorithm for other persistent, narrowband signals from unexpected sources.
323 - Alberto Sesana 2021
I review the scientific potential of the Laser Interferometer Space Antenna (LISA), a space-borne gravitational wave (GW) observatory to be launched in the early 30s. Thanks to its sensitivity in the milli-Hz frequency range, LISA will reveal a varie ty of GW sources across the Universe, from our Solar neighbourhood potentially all the way back to the Big Bang, promising to be a game changer in our understanding of astrophysics, cosmology and fundamental physics. This review dives in the LISA Universe, with a specific focus on black hole science, including the formation and evolution of massive black holes in galaxy centres, the dynamics of dense nuclei and formation of extreme mass ratio inspirals, and the astrophysics of stellar-origin black hole binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا