ترغب بنشر مسار تعليمي؟ اضغط هنا

The US Program in Ground-Based Gravitational Wave Science: Contribution from the LIGO Laboratory

93   0   0.0 ( 0 )
 نشر من قبل Salvatore Vitale
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent gravitational-wave observations from the LIGO and Virgo observatories have brought a sense of great excitement to scientists and citizens the world over. Since September 2015,10 binary black hole coalescences and one binary neutron star coalescence have been observed. They have provided remarkable, revolutionary insight into the gravitational Universe and have greatly extended the field of multi-messenger astronomy. At present, Advanced LIGO can see binary black hole coalescences out to redshift 0.6 and binary neutron star coalescences to redshift 0.05. This probes only a very small fraction of the volume of the observable Universe. However, current technologies can be extended to construct $3^mathrm{rd}$ Generation (3G) gravitational-wave observatories that would extend our reach to the very edge of the observable Universe. The event rates over such a large volume would be in the hundreds of thousands per year (i.e.tens per hour). Such 3G detectors would have a 10-fold improvement in strain sensitivity over the current generation of instruments, yielding signal-to-noise ratios of 1000 for events like those already seen. Several concepts are being studied for which engineering studies and reliable cost estimates will be developed in the next 5 years.

قيم البحث

اقرأ أيضاً

The NASA LISA Study Team was tasked to study how NASA might support US scientists to participate and maximize the science return from the Laser Interferometer Space Antenna (LISA) mission. LISA is gravitational wave observatory led by ESA with NASA a s a junior partner, and is scheduled to launch in 2034. Among our findings: LISA science productivity is greatly enhanced by a full-featured US science center and an open access data model. As other major missions have demonstrated, a science center acts as both a locus and an amplifier of research innovation, data analysis, user support, user training and user interaction. In its most basic function, a US Science Center could facilitate entry into LISA science by hosting a Data Processing Center and a portal for the US community to access LISA data products. However, an enhanced LISA Science Center could: support one of the parallel independent processing pipelines required for data product validation; stimulate the high level of research on data analysis that LISA demands; support users unfamiliar with a novel observatory; facilitate astrophysics and fundamental research; provide an interface into the subtleties of the instrument to validate extraordinary discoveries; train new users; and expand the research community through guest investigator, postdoc and student programs. Establishing a US LISA Science Center well before launch can have a beneficial impact on the participation of the broader astronomical community by providing training, hosting topical workshops, disseminating mock catalogs, software pipelines, and documentation. Past experience indicates that successful science centers are established several years before launch; this early adoption model may be especially relevant for a pioneering mission like LISA.
The past four years have seen a scientific revolution through the birth of a new field: gravitational-wave astronomy. The first detection of gravitational waves---recognised by the 2017 Nobel Prize in Physics---provided unprecedented tests of general relativity while unveiling a previously unknown class of massive black holes, thirty times more massive than the Sun. The subsequent detection of gravitational waves from a merging binary neutron star confirmed the hypothesised connection between binary neutron stars and short gamma-ray bursts while providing an independent measurement of the expansion of the Universe. The discovery enabled precision measurement of the speed of gravity while shedding light on the origin of heavy elements. At the time of writing, the Laser Interferometer Gravitational-wave Observatory (LIGO) and its European partner, Virgo, have published the detection of eleven gravitational-wave events. New, not-yet-published detections are announced on a nearly weekly basis. This fast-growing catalogue of gravitational-wave transients is expected to yield insights into a number of topics, from the equation of state of matter at supra-nuclear densities to the fate of massive stars. The science potential of 3G observatories is enormous, enabling measurements of gravitational waves from the edge of the Universe and precise determination of the neutron star equation of state. Australia is well-positioned to help develop the required technology. The Mid-term Review for the Decadal plan for Australian astronomy 2016-2025 should consider investment in a scoping study for an Australian Gravitational-Wave Pathfinder that develops and validates core technologies required for the global 3G detector network.
The proposed US Extremely Large Telescope (ELT) Program would secure national open access to at least 25% of the observing time on the Thirty Meter Telescope in the north and the Giant Magellan Telescope in the south. ELTs would advance solar system science via exceptional angular resolution, sensitivity, and advanced instrumentation. ELT contributions would include the study of interstellar objects, giant planet systems and ocean worlds, the formation of the solar system traced through small objects in the asteroid and Kuiper belts, and the active support of planetary missions. We recommend that (1) the US ELT Program be listed as critical infrastructure for solar system science, that (2) some support from NASA be provided to ensure mission support capabilities, and that (3) the US ELT Program expand solar-system community participation in development, planning, and operations.
92 - C. Palomba 2012
We present results from searches of recent LIGO and Virgo data for continuous gravitational wave signals (CW) from spinning neutron stars and for a stochastic gravitational wave background (SGWB). The first part of the talk is devoted to CW analysis with a focus on two types of searches. In the targeted search of known neutron stars a precise knowledge of the star parameters is used to apply optimal filtering methods. In the absence of a signal detection, in a few cases, an upper limit on strain amplitude can be set that beats the spindown limit derived from attributing spin-down energy loss to the emission of gravitational waves. In contrast, blind all-sky searches are not directed at specific sources, but rather explore as large a portion of the parameter space as possible. Fully coherent methods cannot be used for these kind of searches which pose a non trivial computational challenge. The second part of the talk is focused on SGWB searches. A stochastic background of gravitational waves is expected to be produced by the superposition of many incoherent sources of cosmological or astrophysical origin. Given the random nature of this kind of signal, it is not possible to distinguish it from noise using a single detector. A typical data analysis strategy relies on cross-correlating the data from a pair or several pairs of detectors, which allows discriminating the searched signal from instrumental noise. Expected sensitivities and prospects for detection from the next generation of interferometers are also discussed for both kind of sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا