ﻻ يوجد ملخص باللغة العربية
We prove an asymptotically tight bound on the extremal density guaranteeing subdivisions of bounded-degree bipartite graphs with a mild separability condition. As corollaries, we answer several questions of Reed and Wood on embedding sparse minors. Among others, $bullet$ $(1+o(1))t^2$ average degree is sufficient to force the $ttimes t$ grid as a topological minor; $bullet$ $(3/2+o(1))t$ average degree forces every $t$-vertex planar graph as a minor, and the constant $3/2$ is optimal, furthermore, surprisingly, the value is the same for $t$-vertex graphs embeddable on any fixed surface; $bullet$ a universal bound of $(2+o(1))t$ on average degree forcing every $t$-vertex graph in any nontrivial minor-closed family as a minor, and the constant 2 is best possible by considering graphs with given treewidth.
The extremal function $c(H)$ of a graph $H$ is the supremum of densities of graphs not containing $H$ as a minor, where the density of a graph $G$ is the ratio of the number of edges to the number of vertices. Myers and Thomason (2005), Norin, Reed,
We prove that every graph with $n$ vertices and at least $5n-8$ edges contains the Petersen graph as a minor, and this bound is best possible. Moreover we characterise all Petersen-minor-free graphs with at least $5n-11$ edges. It follows that every
We show that for pairs $(Q,R)$ and $(S,T)$ of disjoint subsets of vertices of a graph $G$, if $G$ is sufficiently large, then there exists a vertex $v$ in $V(G)-(Qcup Rcup Scup T)$ such that there are two ways to reduce $G$ by a vertex-minor operatio
We consider extremal problems for subgraphs of pseudorandom graphs. For graphs $F$ and $Gamma$ the generalized Turan density $pi_F(Gamma)$ denotes the density of a maximum subgraph of $Gamma$, which contains no copy of~$F$. Extending classical Turan
In this paper, we show that two balanced triangulations of a closed surface are not necessary connected by a sequence of balanced stellar subdivisions and welds. This answers a question posed by Izmestiev, Klee and Novik. We also show that two balanc