ﻻ يوجد ملخص باللغة العربية
The extremal function $c(H)$ of a graph $H$ is the supremum of densities of graphs not containing $H$ as a minor, where the density of a graph $G$ is the ratio of the number of edges to the number of vertices. Myers and Thomason (2005), Norin, Reed, Thomason and Wood (2020), and Thomason and Wales (2019) determined the asymptotic behaviour of $c(H)$ for all polynomially dense graphs $H$, as well as almost all graphs $H$ of constant density. We explore the asymptotic behavior of the extremal function in the regime not covered by the above results, where in addition to having constant density the graph $H$ is in a graph class admitting strongly sublinear separators. We establish asymptotically tight bounds in many cases. For example, we prove that for every planar graph $H$, $$c(H) = (1+o(1))cdotmaxleft{frac{|V(H)|}{2},|V(H)| - alpha (H)right},$$ extending recent results of Haslegrave, Kim and Liu (2020). We also show that an asymptotically tight bound on the extremal function of graphs in minor-closed families proposed by Haslegrave, Kim and Liu (2020) is equivalent to a well studied open weakening of Hadwigers conjecture.
We prove an asymptotically tight bound on the extremal density guaranteeing subdivisions of bounded-degree bipartite graphs with a mild separability condition. As corollaries, we answer several questions of Reed and Wood on embedding sparse minors. A
We prove that every graph with $n$ vertices and at least $5n-8$ edges contains the Petersen graph as a minor, and this bound is best possible. Moreover we characterise all Petersen-minor-free graphs with at least $5n-11$ edges. It follows that every
We consider extremal problems for subgraphs of pseudorandom graphs. For graphs $F$ and $Gamma$ the generalized Turan density $pi_F(Gamma)$ denotes the density of a maximum subgraph of $Gamma$, which contains no copy of~$F$. Extending classical Turan
We show that for pairs $(Q,R)$ and $(S,T)$ of disjoint subsets of vertices of a graph $G$, if $G$ is sufficiently large, then there exists a vertex $v$ in $V(G)-(Qcup Rcup Scup T)$ such that there are two ways to reduce $G$ by a vertex-minor operatio
Frame matroids and lifted-graphic matroids are two distinct minor-closed classes of matroids, each of which generalises the class of graphic matroids. The class of quasi-graphic matroids, recently introduced by Geelen, Gerards, and Whittle, simultane