ﻻ يوجد ملخص باللغة العربية
We show that for pairs $(Q,R)$ and $(S,T)$ of disjoint subsets of vertices of a graph $G$, if $G$ is sufficiently large, then there exists a vertex $v$ in $V(G)-(Qcup Rcup Scup T)$ such that there are two ways to reduce $G$ by a vertex-minor operation while preserving the connectivity between $Q$ and $R$ and the connectivity between $S$ and $T$. Our theorem implies an analogous theorem of Chen and Whittle (2014) for matroids restricted to binary matroids.
The cut-rank of a set $X$ in a graph $G$ is the rank of the $Xtimes (V(G)-X)$ submatrix of the adjacency matrix over the binary field. A split is a partition of the vertex set into two sets $(X,Y)$ such that the cut-rank of $X$ is less than $2$ and b
Tree-width and its linear variant path-width play a central role for the graph minor relation. In particular, Robertson and Seymour (1983) proved that for every tree~$T$, the class of graphs that do not contain $T$ as a minor has bounded path-width.
A class of graphs is $chi$-bounded if there exists a function $f:mathbb Nrightarrow mathbb N$ such that for every graph $G$ in the class and an induced subgraph $H$ of $G$, if $H$ has no clique of size $q+1$, then the chromatic number of $H$ is less
The extremal function $c(H)$ of a graph $H$ is the supremum of densities of graphs not containing $H$ as a minor, where the density of a graph $G$ is the ratio of the number of edges to the number of vertices. Myers and Thomason (2005), Norin, Reed,
We make the first step towards a nerve theorem for graphs. Let $G$ be a simple graph and let $mathcal{F}$ be a family of induced subgraphs of $G$ such that the intersection of any members of $mathcal{F}$ is either empty or connected. We show that if