ﻻ يوجد ملخص باللغة العربية
In this paper, we show that two balanced triangulations of a closed surface are not necessary connected by a sequence of balanced stellar subdivisions and welds. This answers a question posed by Izmestiev, Klee and Novik. We also show that two balanced triangulations of a closed surface are connected by a sequence of three local operations, which we call the pentagon contraction, the balanced edge subdivision and the balanced edge weld. In addition, we prove that two balanced triangulations of the 2-sphere are connected by a sequence of pentagon contractions and their inverses if none of them are octahedral spheres.
We prove an asymptotically tight bound on the extremal density guaranteeing subdivisions of bounded-degree bipartite graphs with a mild separability condition. As corollaries, we answer several questions of Reed and Wood on embedding sparse minors. A
Athanasiadis conjectured that, for every positive integer $r$, the local $h$-polynomial of the $r$th edgewise subdivision of any simplex has only real zeros. In this paper, based on the theory of interlacing polynomials, we prove that a family of pol
Given a flat-foldable origami crease pattern $G=(V,E)$ (a straight-line drawing of a planar graph on a region of the plane) with a mountain-valley (MV) assignment $mu:Eto{-1,1}$ indicating which creases in $E$ bend convexly (mountain) or concavely (v
Let $ngeq 6,kgeq 0$ be two integers. Let $H$ be a graph of order $n$ with $k$ components, each of which is an even cycle of length at least $6$ and $G$ be a bipartite graph with bipartition $(X,Y)$ such that $|X|=|Y|geq n/2$. In this paper, we show t
Bimonotone subdivisions in two dimensions are subdivisions all of whose sides are either vertical or have nonnegative slope. They correspond to statistical estimates of probability distributions of strongly positively dependent random variables. The