ﻻ يوجد ملخص باللغة العربية
Predictions of certifiably robust classifiers remain constant in a neighborhood of a point, making them resilient to test-time attacks with a guarantee. In this work, we present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality in achieving high certified adversarial robustness. Specifically, we propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers. Unlike other poisoning attacks that reduce the accuracy of the poisoned models on a small set of target points, our attack reduces the average certified radius (ACR) of an entire target class in the dataset. Moreover, our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods such as Gaussian data augmentationcite{cohen2019certified}, MACERcite{zhai2020macer}, and SmoothAdvcite{salman2019provably} that achieve high certified adversarial robustness. To make the attack harder to detect, we use clean-label poisoning points with imperceptible distortions. The effectiveness of the proposed method is evaluated by poisoning MNIST and CIFAR10 datasets and training deep neural networks using previously mentioned training methods and certifying the robustness with randomized smoothing. The ACR of the target class, for models trained on generated poison data, can be reduced by more than 30%. Moreover, the poisoned data is transferable to models trained with different training methods and models with different architectures.
Randomized smoothing is a recent technique that achieves state-of-art performance in training certifiably robust deep neural networks. While the smoothing family of distributions is often connected to the choice of the norm used for certification, th
Federated learning is an emerging data-private distributed learning framework, which, however, is vulnerable to adversarial attacks. Although several heuristic defenses are proposed to enhance the robustness of federated learning, they do not provide
As machine learning systems grow in scale, so do their training data requirements, forcing practitioners to automate and outsource the curation of training data in order to achieve state-of-the-art performance. The absence of trustworthy human superv
The difficulty of optimal control problems has classically been characterized in terms of system properties such as minimum eigenvalues of controllability/observability gramians. We revisit these characterizations in the context of the increasing pop
Randomized smoothing is a recently proposed defense against adversarial attacks that has achieved SOTA provable robustness against $ell_2$ perturbations. A number of publications have extended the guarantees to other metrics, such as $ell_1$ or $ell_