ﻻ يوجد ملخص باللغة العربية
Randomized smoothing is a recently proposed defense against adversarial attacks that has achieved SOTA provable robustness against $ell_2$ perturbations. A number of publications have extended the guarantees to other metrics, such as $ell_1$ or $ell_infty$, by using different smoothing measures. Although the current framework has been shown to yield near-optimal $ell_p$ radii, the total safety region certified by the current framework can be arbitrarily small compared to the optimal. In this work, we propose a framework to improve the certified safety region for these smoothed classifiers without changing the underlying smoothing scheme. The theoretical contributions are as follows: 1) We generalize the certification for randomized smoothing by reformulating certified radius calculation as a nested optimization problem over a class of functions. 2) We provide a method to calculate the certified safety region using $0^{th}$-order and $1^{st}$-order information for Gaussian-smoothed classifiers. We also provide a framework that generalizes the calculation for certification using higher-order information. 3) We design efficient, high-confidence estimators for the relevant statistics of the first-order information. Combining the theoretical contribution 2) and 3) allows us to certify safety region that are significantly larger than the ones provided by the current methods. On CIFAR10 and Imagenet datasets, the new regions certified by our approach achieve significant improvements on general $ell_1$ certified radii and on the $ell_2$ certified radii for color-space attacks ($ell_2$ restricted to 1 channel) while also achieving smaller improvements on the general $ell_2$ certified radii. Our framework can also provide a way to circumvent the current impossibility results on achieving higher magnitude of certified radii without requiring the use of data-dependent smoothing techniques.
Deep neural networks are vulnerable to input deformations in the form of vector fields of pixel displacements and to other parameterized geometric deformations e.g. translations, rotations, etc. Current input deformation certification methods either
Randomized smoothing is a recent technique that achieves state-of-art performance in training certifiably robust deep neural networks. While the smoothing family of distributions is often connected to the choice of the norm used for certification, th
We present a scalable technique for upper bounding the Lipschitz constant of generative models. We relate this quantity to the maximal norm over the set of attainable vector-Jacobian products of a given generative model. We approximate this set by la
In this paper, we investigate the popular deep learning optimization routine, Adam, from the perspective of statistical moments. While Adam is an adaptive lower-order moment based (of the stochastic gradient) method, we propose an extension namely, H
Graph neural network models have been extensively used to learn node representations for graph structured data in an end-to-end setting. These models often rely on localized first order approximations of spectral graph convolutions and hence are unab