ترغب بنشر مسار تعليمي؟ اضغط هنا

Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses

104   0   0.0 ( 0 )
 نشر من قبل Micah Goldblum
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As machine learning systems grow in scale, so do their training data requirements, forcing practitioners to automate and outsource the curation of training data in order to achieve state-of-the-art performance. The absence of trustworthy human supervision over the data collection process exposes organizations to security vulnerabilities; training data can be manipulated to control and degrade the downstream behaviors of learned models. The goal of this work is to systematically categorize and discuss a wide range of dataset vulnerabilities and exploits, approaches for defending against these threats, and an array of open problems in this space. In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.



قيم البحث

اقرأ أيضاً

In reward-poisoning attacks against reinforcement learning (RL), an attacker can perturb the environment reward $r_t$ into $r_t+delta_t$ at each step, with the goal of forcing the RL agent to learn a nefarious policy. We categorize such attacks by th e infinity-norm constraint on $delta_t$: We provide a lower threshold below which reward-poisoning attack is infeasible and RL is certified to be safe; we provide a corresponding upper threshold above which the attack is feasible. Feasible attacks can be further categorized as non-adaptive where $delta_t$ depends only on $(s_t,a_t, s_{t+1})$, or adaptive where $delta_t$ depends further on the RL agents learning process at time $t$. Non-adaptive attacks have been the focus of prior works. However, we show that under mild conditions, adaptive attacks can achieve the nefarious policy in steps polynomial in state-space size $|S|$, whereas non-adaptive attacks require exponential steps. We provide a constructive proof that a Fast Adaptive Attack strategy achieves the polynomial rate. Finally, we show that empirically an attacker can find effective reward-poisoning attacks using state-of-the-art deep RL techniques.
Certifiers for neural networks have made great progress towards provable robustness guarantees against evasion attacks using adversarial examples. However, introducing certifiers into deep learning systems also opens up new attack vectors, which need to be considered before deployment. In this work, we conduct the first systematic analysis of training time attacks against certifiers in practical application pipelines, identifying new threat vectors that can be exploited to degrade the overall system. Using these insights, we design two backdoor attacks against network certifiers, which can drastically reduce certified robustness when the backdoor is activated. For example, adding 1% poisoned data points during training is sufficient to reduce certified robustness by up to 95 percentage points, effectively rendering the certifier useless. We analyze how such novel attacks can compromise the overall systems integrity or availability. Our extensive experiments across multiple datasets, model architectures, and certifiers demonstrate the wide applicability of these attacks. A first investigation into potential defenses shows that current approaches only partially mitigate the issue, highlighting the need for new, more specific solutions.
We study a security threat to reinforcement learning where an attacker poisons the learning environment to force the agent into executing a target policy chosen by the attacker. As a victim, we consider RL agents whose objective is to find a policy t hat maximizes reward in infinite-horizon problem settings. The attacker can manipulate the rewards and the transition dynamics in the learning environment at training-time, and is interested in doing so in a stealthy manner. We propose an optimization framework for finding an optimal stealthy attack for different measures of attack cost. We provide lower/upper bounds on the attack cost, and instantiate our attacks in two settings: (i) an offline setting where the agent is doing planning in the poisoned environment, and (ii) an online setting where the agent is learning a policy with poisoned feedback. Our results show that the attacker can easily succeed in teaching any target policy to the victim under mild conditions and highlight a significant security threat to reinforcement learning agents in practice.
This paper studies bandit algorithms under data poisoning attacks in a bounded reward setting. We consider a strong attacker model in which the attacker can observe both the selected actions and their corresponding rewards, and can contaminate the re wards with additive noise. We show that emph{any} bandit algorithm with regret $O(log T)$ can be forced to suffer a regret $Omega(T)$ with an expected amount of contamination $O(log T)$. This amount of contamination is also necessary, as we prove that there exists an $O(log T)$ regret bandit algorithm, specifically the classical UCB, that requires $Omega(log T)$ amount of contamination to suffer regret $Omega(T)$. To combat such poising attacks, our second main contribution is to propose a novel algorithm, Secure-UCB, which uses limited emph{verification} to access a limited number of uncontaminated rewards. We show that with $O(log T)$ expected number of verifications, Secure-UCB can restore the order optimal $O(log T)$ regret emph{irrespective of the amount of contamination} used by the attacker. Finally, we prove that for any bandit algorithm, this number of verifications $O(log T)$ is necessary to recover the order-optimal regret. We can then conclude that Secure-UCB is order-optimal in terms of both the expected regret and the expected number of verifications, and can save stochastic bandits from any data poisoning attack.
We study black-box reward poisoning attacks against reinforcement learning (RL), in which an adversary aims to manipulate the rewards to mislead a sequence of RL agents with unknown algorithms to learn a nefarious policy in an environment unknown to the adversary a priori. That is, our attack makes minimum assumptions on the prior knowledge of the adversary: it has no initial knowledge of the environment or the learner, and neither does it observe the learners internal mechanism except for its performed actions. We design a novel black-box attack, U2, that can provably achieve a near-matching performance to the state-of-the-art white-box attack, demonstrating the feasibility of reward poisoning even in the most challenging black-box setting.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا