ترغب بنشر مسار تعليمي؟ اضغط هنا

An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems

330   0   0.0 ( 0 )
 نشر من قبل Lei Yang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a class of specially structured linear programming (LP) problems, which has favorable modeling capability for important application problems in different areas such as optimal transport, discrete tomography and economics. To solve these generally large-scale LP problems efficiently, we design an implementable inexact entropic proximal point algorithm (iEPPA) combined with an easy-to-implement dual block coordinate descent method as a subsolver. Unlike existing entropy-type proximal point algorithms, our iEPPA employs a more practically checkable stopping condition for solving the associated subproblems while achieving provable convergence. Moreover, when solving the capacity constrained multi-marginal optimal transport (CMOT) problem (a special case of our LP problem), our iEPPA is able to bypass the underlying numerical instability issues that often appear in the popular entropic regularization approach, since our algorithm does not require the proximal parameter to be very small in order to obtain an accurate approximate solution. Numerous numerical experiments show that our iEPPA is highly efficient and robust for solving large-scale CMOT problems, in comparison to the (stabilized) Dykstras algorithm and the commercial solver Gurobi. Moreover, the experiments on discrete tomography also highlight the potential modeling power of our model.

قيم البحث

اقرأ أيضاً

In this paper, the optimization problem of the supervised distance preserving projection (SDPP) for data dimension reduction (DR) is considered, which is equivalent to a rank constrained least squares semidefinite programming (RCLSSDP). In order to o vercome the difficulties caused by rank constraint, the difference-of-convex (DC) regularization strategy was employed, then the RCLSSDP is transferred into a series of least squares semidefinite programming with DC regularization (DCLSSDP). An inexact proximal DC algorithm with sieving strategy (s-iPDCA) is proposed for solving the DCLSSDP, whose subproblems are solved by the accelerated block coordinate descent (ABCD) method. Convergence analysis shows that the generated sequence of s-iPDCA globally converges to stationary points of the corresponding DC problem. To show the efficiency of our proposed algorithm for solving the RCLSSDP, the s-iPDCA is compared with classical proximal DC algorithm (PDCA) and the PDCA with extrapolation (PDCAe) by performing DR experiment on the COIL-20 database, the results show that the s-iPDCA outperforms the PDCA and the PDCAe in solving efficiency. Moreover, DR experiments for face recognition on the ORL database and the YaleB database demonstrate that the rank constrained kernel SDPP (RCKSDPP) is effective and competitive by comparing the recognition accuracy with kernel semidefinite SDPP (KSSDPP) and kernal principal component analysis (KPCA).
112 - Lei Yang , Kim-Chuan Toh 2021
We study a general convex optimization problem, which covers various classic problems in different areas and particularly includes many optimal transport related problems arising in recent years. To solve this problem, we revisit the classic Bregman proximal point algorithm (BPPA) and introduce a new inexact stopping condition for solving the subproblems, which can circumvent the underlying feasibility difficulty often appearing in existing inexact conditions when the problem has a complex feasible set. Our inexact condition also covers several existing inexact conditions and hence, as a byproduct, we actually develop a certain unified inexact framework for BPPA. This makes our inexact BPPA (iBPPA) more flexible to fit different scenarios in practice. In particular, as an application to the standard optimal transport (OT) problem, our iBPPA with the entropic proximal term can bypass some numerical instability issues that usually plague the well-recognized entropic regularization approach in the OT community, since our iBPPA does not require the proximal parameter to be very small for obtaining an accurate approximate solution. The iteration complexity of $mathcal{O}(1/k)$ and the convergence of the sequence are also established for our iBPPA under some mild conditions. Moreover, inspired by Nesterovs acceleration technique, we develop a variant of our iBPPA, denoted by V-iBPPA, and establish the iteration complexity of $mathcal{O}(1/k^{lambda})$, where $lambdageq1$ is a quadrangle scaling exponent of the kernel function. Some preliminary numerical experiments for solving the standard OT problem are conducted to show the convergence behaviors of our iBPPA and V-iBPPA under different inexactness settings. The experiments also empirically verify the potential of our V-iBPPA on improving the convergence speed.
In this paper, we consider an accelerated method for solving nonconvex and nonsmooth minimization problems. We propose a Bregman Proximal Gradient algorithm with extrapolation(BPGe). This algorithm extends and accelerates the Bregman Proximal Gradien t algorithm (BPG), which circumvents the restrictive global Lipschitz gradient continuity assumption needed in Proximal Gradient algorithms (PG). The BPGe algorithm has higher generality than the recently introduced Proximal Gradient algorithm with extrapolation(PGe), and besides, due to the extrapolation step, BPGe converges faster than BPG algorithm. Analyzing the convergence, we prove that any limit point of the sequence generated by BPGe is a stationary point of the problem by choosing parameters properly. Besides, assuming Kurdyka-{L}ojasiewicz property, we prove the whole sequences generated by BPGe converges to a stationary point. Finally, to illustrate the potential of the new method BPGe, we apply it to two important practical problems that arise in many fundamental applications (and that not satisfy global Lipschitz gradient continuity assumption): Poisson linear inverse problems and quadratic inverse problems. In the tests the accelerated BPGe algorithm shows faster convergence results, giving an interesting new algorithm.
132 - Hongzhou Lin 2016
We propose an inexact variable-metric proximal point algorithm to accelerate gradient-based optimization algorithms. The proposed scheme, called QNing can be notably applied to incremental first-order methods such as the stochastic variance-reduced g radient descent algorithm (SVRG) and other randomized incremental optimization algorithms. QNing is also compatible with composite objectives, meaning that it has the ability to provide exactly sparse solutions when the objective involves a sparsity-inducing regularization. When combined with limited-memory BFGS rules, QNing is particularly effective to solve high-dimensional optimization problems, while enjoying a worst-case linear convergence rate for strongly convex problems. We present experimental results where QNing gives significant improvements over competing methods for training machine learning methods on large samples and in high dimensions.
In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequ ence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-based method. The computational complexity of the proposed method is analyzed separately for the cases of convex constraint and non-convex constraint. For both cases, the complexity results are established in terms of the number of proximal gradient steps needed to find an $varepsilon$-stationary point. When the constraint functions are convex, we show a complexity result of $tilde O(varepsilon^{-5/2})$ to produce an $varepsilon$-stationary point under the Slaters condition. When the constraint functions are non-convex, the complexity becomes $tilde O(varepsilon^{-3})$ if a non-singularity condition holds on constraints and otherwise $tilde O(varepsilon^{-4})$ if a feasible initial solution is available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا