ﻻ يوجد ملخص باللغة العربية
We study a general convex optimization problem, which covers various classic problems in different areas and particularly includes many optimal transport related problems arising in recent years. To solve this problem, we revisit the classic Bregman proximal point algorithm (BPPA) and introduce a new inexact stopping condition for solving the subproblems, which can circumvent the underlying feasibility difficulty often appearing in existing inexact conditions when the problem has a complex feasible set. Our inexact condition also covers several existing inexact conditions and hence, as a byproduct, we actually develop a certain unified inexact framework for BPPA. This makes our inexact BPPA (iBPPA) more flexible to fit different scenarios in practice. In particular, as an application to the standard optimal transport (OT) problem, our iBPPA with the entropic proximal term can bypass some numerical instability issues that usually plague the well-recognized entropic regularization approach in the OT community, since our iBPPA does not require the proximal parameter to be very small for obtaining an accurate approximate solution. The iteration complexity of $mathcal{O}(1/k)$ and the convergence of the sequence are also established for our iBPPA under some mild conditions. Moreover, inspired by Nesterovs acceleration technique, we develop a variant of our iBPPA, denoted by V-iBPPA, and establish the iteration complexity of $mathcal{O}(1/k^{lambda})$, where $lambdageq1$ is a quadrangle scaling exponent of the kernel function. Some preliminary numerical experiments for solving the standard OT problem are conducted to show the convergence behaviors of our iBPPA and V-iBPPA under different inexactness settings. The experiments also empirically verify the potential of our V-iBPPA on improving the convergence speed.
In this paper, we develop an inexact Bregman proximal gradient (iBPG) method based on a novel two-point inexact stopping condition, and establish the iteration complexity of $mathcal{O}(1/k)$ as well as the convergence of the sequence under some prop
We introduce a class of specially structured linear programming (LP) problems, which has favorable modeling capability for important application problems in different areas such as optimal transport, discrete tomography and economics. To solve these
In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequ
In this paper, we consider an accelerated method for solving nonconvex and nonsmooth minimization problems. We propose a Bregman Proximal Gradient algorithm with extrapolation(BPGe). This algorithm extends and accelerates the Bregman Proximal Gradien
In this paper, we develop a parameterized proximal point algorithm (P-PPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a wors