ترغب بنشر مسار تعليمي؟ اضغط هنا

Bregman Proximal Gradient Algorithm with Extrapolation for a class of Nonconvex Nonsmooth Minimization Problems

119   0   0.0 ( 0 )
 نشر من قبل Xiaoya Zhang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider an accelerated method for solving nonconvex and nonsmooth minimization problems. We propose a Bregman Proximal Gradient algorithm with extrapolation(BPGe). This algorithm extends and accelerates the Bregman Proximal Gradient algorithm (BPG), which circumvents the restrictive global Lipschitz gradient continuity assumption needed in Proximal Gradient algorithms (PG). The BPGe algorithm has higher generality than the recently introduced Proximal Gradient algorithm with extrapolation(PGe), and besides, due to the extrapolation step, BPGe converges faster than BPG algorithm. Analyzing the convergence, we prove that any limit point of the sequence generated by BPGe is a stationary point of the problem by choosing parameters properly. Besides, assuming Kurdyka-{L}ojasiewicz property, we prove the whole sequences generated by BPGe converges to a stationary point. Finally, to illustrate the potential of the new method BPGe, we apply it to two important practical problems that arise in many fundamental applications (and that not satisfy global Lipschitz gradient continuity assumption): Poisson linear inverse problems and quadratic inverse problems. In the tests the accelerated BPGe algorithm shows faster convergence results, giving an interesting new algorithm.



قيم البحث

اقرأ أيضاً

In this paper, we introduce a proximal-proximal majorization-minimization (PPMM) algorithm for nonconvex tuning-free robust regression problems. The basic idea is to apply the proximal majorization-minimization algorithm to solve the nonconvex proble m with the inner subproblems solved by a sparse semismooth Newton (SSN) method based proximal point algorithm (PPA). We must emphasize that the main difficulty in the design of the algorithm lies in how to overcome the singular difficulty of the inner subproblem. Furthermore, we also prove that the PPMM algorithm converges to a d-stationary point. Due to the Kurdyka-Lojasiewicz (KL) property of the problem, we present the convergence rate of the PPMM algorithm. Numerical experiments demonstrate that our proposed algorithm outperforms the existing state-of-the-art algorithms.
In this paper, we consider a class of nonsmooth nonconvex optimization problems whose objective is the sum of a block relative smooth function and a proper and lower semicontinuous block separable function. Although the analysis of block proximal gra dient (BPG) methods for the class of block $L$-smooth functions have been successfully extended to Bregman BPG methods that deal with the class of block relative smooth functions, accelerated Bregman BPG methods are scarce and challenging to design. Taking our inspiration from Nesterov-type acceleration and the majorization-minimization scheme, we propose a block alternating Bregman Majorization-Minimization framework with Extrapolation (BMME). We prove subsequential convergence of BMME to a first-order stationary point under mild assumptions, and study its global convergence under stronger conditions. We illustrate the effectiveness of BMME on the penalized orthogonal nonnegative matrix factorization problem.
132 - Yi Zhou , Zhe Wang , Kaiyi Ji 2020
Various types of parameter restart schemes have been proposed for accelerated gradient algorithms to facilitate their practical convergence in convex optimization. However, the convergence properties of accelerated gradient algorithms under parameter restart remain obscure in nonconvex optimization. In this paper, we propose a novel accelerated proximal gradient algorithm with parameter restart (named APG-restart) for solving nonconvex and nonsmooth problems. Our APG-restart is designed to 1) allow for adopting flexible parameter restart schemes that cover many existing ones; 2) have a global sub-linear convergence rate in nonconvex and nonsmooth optimization; and 3) have guaranteed convergence to a critical point and have various types of asymptotic convergence rates depending on the parameterization of local geometry in nonconvex and nonsmooth optimization. Numerical experiments demonstrate the effectiveness of our proposed algorithm.
While many distributed optimization algorithms have been proposed for solving smooth or convex problems over the networks, few of them can handle non-convex and non-smooth problems. Based on a proximal primal-dual approach, this paper presents a new (stochastic) distributed algorithm with Nesterov momentum for accelerated optimization of non-convex and non-smooth problems. Theoretically, we show that the proposed algorithm can achieve an $epsilon$-stationary solution under a constant step size with $mathcal{O}(1/epsilon^2)$ computation complexity and $mathcal{O}(1/epsilon)$ communication complexity. When compared to the existing gradient tracking based methods, the proposed algorithm has the same order of computation complexity but lower order of communication complexity. To the best of our knowledge, the presented result is the first stochastic algorithm with the $mathcal{O}(1/epsilon)$ communication complexity for non-convex and non-smooth problems. Numerical experiments for a distributed non-convex regression problem and a deep neural network based classification problem are presented to illustrate the effectiveness of the proposed algorithms.
To solve distributed optimization efficiently with various constraints and nonsmooth functions, we propose a distributed mirror descent algorithm with embedded Bregman damping, as a generalization of conventional distributed projection-based algorith ms. In fact, our continuous-time algorithm well inherits good capabilities of mirror descent approaches to rapidly compute explicit solutions to the problems with some specific constraint structures. Moreover, we rigorously prove the convergence of our algorithm, along with the boundedness of the trajectory and the accuracy of the solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا