ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of Surface Ferromagnetism and Gapless Topological State in MnBi$_2$Te$_4$

157   0   0.0 ( 0 )
 نشر من قبل Daniel Nevola
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Surface magnetism and its correlation with the electronic structure are critical to understand the gapless topological surface state in the intrinsic magnetic topological insulator MnBi$_2$Te$_4$. Here, using static and time resolved angle-resolved photoemission spectroscopy (ARPES), we find a significant ARPES intensity change together with a gap opening on a Rashba-like conduction band. Comparison with a model simulation strongly indicates that the surface magnetism on cleaved MnBi$_2$Te$_4$ is the same as its bulk state. The coexistence of surface ferromagnetism and a gapless TSS uncovers the novel complexity of MnBi$_2$Te$_4$ that may be responsible for the low quantum anomalous Hall temperature of exfoliated MnBi$_2$Te$_4$.



قيم البحث

اقرأ أيضاً

The unoccupied part of the band structure in the magnetic topological insulator MnBi$_2$Te$_4$ is studied by first-principles calculations. We find a second, unoccupied topological surface state with similar electronic structure to the celebrated occ upied topological surface state. This state is energetically located approximate $1.6$ eV above the occupied Dirac surface state around $Gamma$ point, which permit it to be directly observed by the two-photon angle-resolved photoemission spectroscopy. We propose a unified effective model for the occupied and unoccupied surface states. Due to the direct optical coupling between these two surface states, we further propose two optical effects to detect the unoccupied surface state. One is the polar Kerr effect in odd layer from nonvanishing ac Hall conductance $sigma_{xy}(omega)$, and the other is higher-order terahertz-sideband generation in even layer, where the non-vanishining Berry curvature of the unoccupied surface state is directly observed from the giant Faraday rotation of optical emission.
87 - Yong Hu , Lixuan Xu , Mengzhu Shi 2019
In the newly discovered magnetic topological insulator MnBi$_2$Te$_4$, both axion insulator state and quantized anomalous Hall effect (QAHE) have been observed by tuning the magnetic structure. The related (MnBi$_2$Te$_4$)$_m$(Bi$_2$Te$_3$)$_n$ heter ostructures with increased tuning knobs, are predicted to be a more versatile platform for exotic topological states. Here, we report angle-resolved photoemission spectroscopy (ARPES) studies on a series of the heterostructures (MnBi$_2$Te$_4$, MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$). A universal gapless Dirac cone is observed at the MnBi$_2$Te$_4$ terminated (0001) surfaces in all systems. This is in sharp contrast to the expected gap from the original antiferromagnetic ground state, indicating an altered magnetic structure near the surface, possibly due to the surface termination. In the meantime, the electron band dispersion of the surface states, presumably dominated by the top surface, is found to be sensitive to different stackings of the underlying MnBi$_2$Te$_4$ and Bi$_2$Te$_3$ layers. Our results suggest the high tunability of both magnetic and electronic structures of the topological surface states in (MnBi$_2$Te$_4$)$_m$(Bi$_2$Te$_3$)$_n$ heterostructures, which is essential in realizing various novel topological states.
Here we present microscopic evidence of the persistence of uniaxial A-type antiferromagnetic order to the surface layers of MnBi$_2$Te$_4$ single crystals using magnetic force microscopy. Our results reveal termination-dependent magnetic contrast acr oss both surface step edges and domain walls, which can be screened by thin layers of soft magnetism. The robust surface A-type order is further corroborated by the observation of termination-dependent surface spin-flop transitions, which have been theoretically proposed decades ago. Our results not only provide key ingredients for understanding the electronic properties of the antiferromagnetic topological insulator MnBi$_2$Te$_4$, but also open a new paradigm for exploring intrinsic surface metamagnetic transitions in natural antiferromagnets.
283 - Bing Xu , Y. Zhang , E. H. Alizade 2020
With infrared spectroscopy we studied the bulk electronic properties of the topological antiferromagnet MnBi$_2$Te$_4$ with $T_N simeq 25~mathrm{K}$. With the support of band structure calculations, we assign the intra- and interband excitations and determine the band gap of $E_g approx$ 0.17 eV. We also obtain evidence for two types of conduction bands with light and very heavy carriers. The multiband free carrier response gives rise to an unusually strong increase of the combined plasma frequency, $omega_{mathrm{pl}}$, below 300 K. The band reconstruction below $T_N$, yields an additional increase of $omega_{mathrm{pl}}$ and a splitting of the transition between the two conduction bands by about 54 meV. Our study thus reveals a complex and strongly temperature dependent multi-band low-energy response that has important implications for the study of the surface states and device applications.
Using scanning tunneling microscopy and spectroscopy, we visualized the native defects in antiferromagnetic topological insulator $mathrm{MnBi_2Te_4}$. Two native defects $mathrm{Mn_{Bi}}$ and $mathrm{Bi_{Te}}$ antisites can be well resolved in the t opographic images. $mathrm{Mn_{Bi}}$ tend to suppress the density of states at conduction band edge. Spectroscopy imaging reveals a localized peak-like local density of state at $sim80$~meV below the Fermi energy. A careful inspection of topographic and spectroscopic images, combined with density functional theory calculation, suggests this results from $mathrm{Bi_{Mn}}$ antisites at Mn sites. The random distribution of $mathrm{Mn_{Bi}}$ and $mathrm{Bi_{Mn}}$ antisites results in spatial fluctuation of local density of states near the Fermi level in $mathrm{MnBi_2Te_4}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا