ﻻ يوجد ملخص باللغة العربية
Contrastive learning relies on constructing a collection of negative examples that are sufficiently hard to discriminate against positive queries when their representations are self-trained. Existing contrastive learning methods either maintain a queue of negative samples over minibatches while only a small portion of them are updated in an iteration, or only use the other examples from the current minibatch as negatives. They could not closely track the change of the learned representation over iterations by updating the entire queue as a whole, or discard the useful information from the past minibatches. Alternatively, we present to directly learn a set of negative adversaries playing against the self-trained representation. Two players, the representation network and negative adversaries, are alternately updated to obtain the most challenging negative examples against which the representation of positive queries will be trained to discriminate. We further show that the negative adversaries are updated towards a weighted combination of positive queries by maximizing the adversarial contrastive loss, thereby allowing them to closely track the change of representations over time. Experiment results demonstrate the proposed Adversarial Contrastive (AdCo) model not only achieves superior performances (a top-1 accuracy of 73.2% over 200 epochs and 75.7% over 800 epochs with linear evaluation on ImageNet), but also can be pre-trained more efficiently with fewer epochs.
We present a new model DrNET that learns disentangled image representations from video. Our approach leverages the temporal coherence of video and a novel adversarial loss to learn a representation that factorizes each frame into a stationary part an
Learning a deep model from small data is yet an opening and challenging problem. We focus on one-shot classification by deep learning approach based on a small quantity of training samples. We proposed a novel deep learning approach named Local Contr
Well structured visual representations can make robot learning faster and can improve generalization. In this paper, we study how we can acquire effective object-centric representations for robotic manipulation tasks without human labeling by using a
Contrastive learning (CL) has recently emerged as an effective approach to learning representation in a range of downstream tasks. Central to this approach is the selection of positive (similar) and negative (dissimilar) sets to provide the model the
Although deep neural networks have shown promising performances on various tasks, they are susceptible to incorrect predictions induced by imperceptibly small perturbations in inputs. A large number of previous works proposed to detect adversarial at