ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Learning of Disentangled Representations from Video

115   0   0.0 ( 0 )
 نشر من قبل Emily Denton
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new model DrNET that learns disentangled image representations from video. Our approach leverages the temporal coherence of video and a novel adversarial loss to learn a representation that factorizes each frame into a stationary part and a temporally varying component. The disentangled representation can be used for a range of tasks. For example, applying a standard LSTM to the time-vary components enables prediction of future frames. We evaluate our approach on a range of synthetic and real videos, demonstrating the ability to coherently generate hundreds of steps into the future.

قيم البحث

اقرأ أيضاً

The goal of the unsupervised learning of disentangled representations is to separate the independent explanatory factors of variation in the data without access to supervision. In this paper, we summarize the results of Locatello et al., 2019, and fo cus on their implications for practitioners. We discuss the theoretical result showing that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases and the practical challenges it entails. Finally, we comment on our experimental findings, highlighting the limitations of state-of-the-art approaches and directions for future research.
67 - Qianjiang Hu , Xiao Wang , Wei Hu 2020
Contrastive learning relies on constructing a collection of negative examples that are sufficiently hard to discriminate against positive queries when their representations are self-trained. Existing contrastive learning methods either maintain a que ue of negative samples over minibatches while only a small portion of them are updated in an iteration, or only use the other examples from the current minibatch as negatives. They could not closely track the change of the learned representation over iterations by updating the entire queue as a whole, or discard the useful information from the past minibatches. Alternatively, we present to directly learn a set of negative adversaries playing against the self-trained representation. Two players, the representation network and negative adversaries, are alternately updated to obtain the most challenging negative examples against which the representation of positive queries will be trained to discriminate. We further show that the negative adversaries are updated towards a weighted combination of positive queries by maximizing the adversarial contrastive loss, thereby allowing them to closely track the change of representations over time. Experiment results demonstrate the proposed Adversarial Contrastive (AdCo) model not only achieves superior performances (a top-1 accuracy of 73.2% over 200 epochs and 75.7% over 800 epochs with linear evaluation on ImageNet), but also can be pre-trained more efficiently with fewer epochs.
Time-series representation learning is a fundamental task for time-series analysis. While significant progress has been made to achieve accurate representations for downstream applications, the learned representations often lack interpretability and do not expose semantic meanings. Different from previous efforts on the entangled feature space, we aim to extract the semantic-rich temporal correlations in the latent interpretable factorized representation of the data. Motivated by the success of disentangled representation learning in computer vision, we study the possibility of learning semantic-rich time-series representations, which remains unexplored due to three main challenges: 1) sequential data structure introduces complex temporal correlations and makes the latent representations hard to interpret, 2) sequential models suffer from KL vanishing problem, and 3) interpretable semantic concepts for time-series often rely on multiple factors instead of individuals. To bridge the gap, we propose Disentangle Time Series (DTS), a novel disentanglement enhancement framework for sequential data. Specifically, to generate hierarchical semantic concepts as the interpretable and disentangled representation of time-series, DTS introduces multi-level disentanglement strategies by covering both individual latent factors and group semantic segments. We further theoretically show how to alleviate the KL vanishing problem: DTS introduces a mutual information maximization term, while preserving a heavier penalty on the total correlation and the dimension-wise KL to keep the disentanglement property. Experimental results on various real-world benchmark datasets demonstrate that the representations learned by DTS achieve superior performance in downstream applications, with high interpretability of semantic concepts.
The idea behind the emph{unsupervised} learning of emph{disentangled} representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common assumptions. We first theoretically show that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data. Then, we train over $14000$ models covering most prominent methods and evaluation metrics in a reproducible large-scale experimental study on eight data sets. We observe that while the different methods successfully enforce properties encouraged by the corresponding losses, well-disentangled models seemingly cannot be identified without supervision. Furthermore, different evaluation metrics do not always agree on what should be considered disentangled and exhibit systematic differences in the estimation. Finally, increased disentanglement does not seem to necessarily lead to a decreased sample complexity of learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a reproducible experimental setup covering several data sets.
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforc ement learning tasks, and often assumes full knowledge of task labels and boundaries. In this work, we propose an approach (CURL) to tackle a more general problem that we will refer to as unsupervised continual learning. The focus is on learning representations without any knowledge about task identity, and we explore scenarios when there are abrupt changes between tasks, smooth transitions from one task to another, or even when the data is shuffled. The proposed approach performs task inference directly within the model, is able to dynamically expand to capture new concepts over its lifetime, and incorporates additional rehearsal-based techniques to deal with catastrophic forgetting. We demonstrate the efficacy of CURL in an unsupervised learning setting with MNIST and Omniglot, where the lack of labels ensures no information is leaked about the task. Further, we demonstrate strong performance compared to prior art in an i.i.d setting, or when adapting the technique to supervised tasks such as incremental class learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا