ﻻ يوجد ملخص باللغة العربية
Learning a deep model from small data is yet an opening and challenging problem. We focus on one-shot classification by deep learning approach based on a small quantity of training samples. We proposed a novel deep learning approach named Local Contrast Learning (LCL) based on the key insight about a human cognitive behavior that human recognizes the objects in a specific context by contrasting the objects in the context or in her/his memory. LCL is used to train a deep model that can contrast the recognizing sample with a couple of contrastive samples randomly drawn and shuffled. On one-shot classification task on Omniglot, the deep model based LCL with 122 layers and 1.94 millions of parameters, which was trained on a tiny dataset with only 60 classes and 20 samples per class, achieved the accuracy 97.99% that outperforms human and state-of-the-art established by Bayesian Program Learning (BPL) trained on 964 classes. LCL is a fundamental idea which can be applied to alleviate parametric models overfitting resulted by lack of training samples.
Contrastive learning relies on constructing a collection of negative examples that are sufficiently hard to discriminate against positive queries when their representations are self-trained. Existing contrastive learning methods either maintain a que
We propose a new clustering algorithm, Extended Affinity Propagation, based on pairwise similarities. Extended Affinity Propagation is developed by modifying Affinity Propagation such that the desirable features of Affinity Propagation, e.g., exempla
Humans, as the most powerful learners on the planet, have accumulated a lot of learning skills, such as learning through tests, interleaving learning, self-explanation, active recalling, to name a few. These learning skills and methodologies enable h
This paper presents a locally decoupled network parameter learning with local propagation. Three elements are taken into account: (i) sets of nonlinear transforms that describe the representations at all nodes, (ii) a local objective at each node rel
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforc