ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic properties of InAs/EuS/Al hybrid nanowires

80   0   0.0 ( 0 )
 نشر من قبل Chun-Xiao Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the electronic properties of InAs/EuS/Al heterostructures as explored in a recent experiment [S. Vaitiekenas emph{et al.}, Nat. Phys. (2020)], combining both spectroscopic results and microscopic device simulations. In particular, we use angle-resolved photoemission spectroscopy to investigate the band bending at the InAs/EuS interface. The resulting band offset value serves as an essential input to subsequent microscopic device simulations, allowing us to map the electronic wave function distribution. We conclude that the magnetic proximity effects at the Al/EuS as well as the InAs/EuS interfaces are both essential to achieve topological superconductivity at zero applied magnetic field. Mapping the topological phase diagram as a function of gate voltages and proximity-induced exchange couplings, we show that the ferromagnetic hybrid nanowire with overlapping Al and EuS layers can become a topological superconductor within realistic parameter regimes, and that the topological phase can be optimized by external gating. Our work highlights the need for a combined experimental and theoretical effort for faithful device simulation.



قيم البحث

اقرأ أيضاً

Dispersive charge sensing is realized in hybrid semiconductor-superconductor nanowires in gate-defined single- and double-island device geometries. Signal-to-noise ratios (SNRs) were measured both in the frequency and time domain. Frequency-domain me asurements were carried out as a function of frequency and power and yield a charge sensitivity of $1 times 10^{-3} e/sqrt{rm Hz}$ for an 11 MHz measurement bandwidth. Time-domain measurements yield SNR > 1 for 20 $mu$s integration time. At zero magnetic field, photon-assisted tunneling was detected dispersively in a double-island geometry, indicating coherent hybridization of the two superconducting islands. At an axial magnetic field of 0.6 T, subgap states are detected dispersively, demonstrating the suitability of the method for sensing in the topological regime.
193 - M. D. Schroer , J. R. Petta 2009
The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are ~4X larger in the nominall y defect-free segments of the wire. We also find that dark field optical intensity is correlated with the mobility, suggesting a simple route for selecting wires with a low defect density. At low temperatures, FETs fabricated on high defect density segments of InAs nanowires showed transport properties consistent with single electron charging, even on devices with low resistance ohmic contacts. The charging energies obtained suggest quantum dot formation at defects in the wires. These results reinforce the importance of controlling the defect density in order to produce high quality electrical and optical devices using InAs nanowires.
421 - Riccardo Rurali 2009
In this paper we review the theory of silicon nanowires. We focus on nanowires with diameters below 10 nm, where quantum effects become important and the properties diverge significantly from those of bulk silicon. These wires can be efficiently trea ted within electronic structure simulation methods and will be among the most important functional blocks of future nanoelectronic devices. Firstly, we review the structural properties of silicon nanowires, emphasizing the close connection between the growth orientation, the cross-section and the bounding facets. Secondly, we discuss the electronic structure of pristine and doped nanowires, which hold the ultimate key for their applicability in novel electronic devices. Finally, we review transport properties where some of the most important limitations in the performances of nanowire-based devices can lay. Many of the unique properties of these systems are at the same time defying challenges and opportunities for great technological advances.
Understanding the spatial distribution of charge carriers in III-V nanowires proximity coupled to superconductors is important for the design and interpretation of experiments based on hybrid quantum devices. In this letter, the gate-dependent surfac e accumulation layer of InAsSb/Al nanowires was studied by means of Andreev interference in a parallel magnetic field. Both uniform hybrid nanowires and devices featuring a short Josephson junction fabricated by shadow lithography, exhibited periodic modulation of the switching current. The period corresponds to a flux quantum through the nanowire diameter and is consistent with Andreev bound states occupying a cylindrical surface accumulation layer. The spatial distribution was tunable by a gate potential as expected from electrostatic models.
139 - A.A. Zhukov , Ch. Volk , A. Winden 2014
In the current paper a set of experiments dedicated to investigations of local electronic transport in undoped InAs nanowires at helium temperatures in the presence of a charged atomic-force microscope tip is presented. Both nanowires without defects and with internal tunneling barriers were studied. The measurements were performed at various carrier concentrations in the systems and opacity of contact-to-wire interfaces. The regime of Coulomb blockade is investigated in detail including negative differential conductivity of the whole system. The situation with open contacts with one tunneling barrier and undivided wire is also addressed. Special attention is devoted to recently observed quasi-periodic standing waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا