ﻻ يوجد ملخص باللغة العربية
The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are ~4X larger in the nominally defect-free segments of the wire. We also find that dark field optical intensity is correlated with the mobility, suggesting a simple route for selecting wires with a low defect density. At low temperatures, FETs fabricated on high defect density segments of InAs nanowires showed transport properties consistent with single electron charging, even on devices with low resistance ohmic contacts. The charging energies obtained suggest quantum dot formation at defects in the wires. These results reinforce the importance of controlling the defect density in order to produce high quality electrical and optical devices using InAs nanowires.
We study the electronic properties of InAs/EuS/Al heterostructures as explored in a recent experiment [S. Vaitiekenas emph{et al.}, Nat. Phys. (2020)], combining both spectroscopic results and microscopic device simulations. In particular, we use ang
We report on the heterogeneous nucleation of catalyst-free InAs nanowires on Si (111) substrates by chemical beam epitaxy. We show that nanowire nucleation is enhanced by sputtering the silicon substrate with energetic particles. We argue that partic
We report a significant and persistent enhancement of the conductivity in free-standing non intentionnaly doped InAs nanowires upon irradiation in ultra high vacuum. Combining four-point probe transport measurements performed on nanowires with differ
We use polarized photocurrent spectroscopy in a nanowire device to investigate the band structure of hexagonal Wurtzite InAs. Signatures of optical transitions between four valence bands and two conduction bands are observed which are consistent with
Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots