ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigations of local electronic transport in InAs nanowires by scanning gate microscopy at helium temperatures

137   0   0.0 ( 0 )
 نشر من قبل Alexey Zhukov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the current paper a set of experiments dedicated to investigations of local electronic transport in undoped InAs nanowires at helium temperatures in the presence of a charged atomic-force microscope tip is presented. Both nanowires without defects and with internal tunneling barriers were studied. The measurements were performed at various carrier concentrations in the systems and opacity of contact-to-wire interfaces. The regime of Coulomb blockade is investigated in detail including negative differential conductivity of the whole system. The situation with open contacts with one tunneling barrier and undivided wire is also addressed. Special attention is devoted to recently observed quasi-periodic standing waves.



قيم البحث

اقرأ أيضاً

We study the relationship between the local density of states (LDOS) and the conductance variation $Delta G$ in scanning-gate-microscopy experiments on mesoscopic structures as a charged tip scans above the sample surface. We present an analytical mo del showing that in the linear-response regime the conductance shift $Delta G$ is proportional to the Hilbert transform of the LDOS and hence a generalized Kramers-Kronig relation holds between LDOS and $Delta G$. We analyze the physical conditions for the validity of this relationship both for one-dimensional and two-dimensional systems when several channels contribute to the transport. We focus on realistic Aharonov-Bohm rings including a random distribution of impurities and analyze the LDOS-$Delta G$ correspondence by means of exact numerical simulations, when localized states or semi-classical orbits characterize the wavefunction of the system.
148 - N. Paradiso , S. Heun , S. Roddaro 2013
Electronic Mach-Zehnder interferometers in the Quantum Hall (QH) regime are currently discussed for the realization of quantum information schemes. A recently proposed device architecture employs interference between two co-propagating edge channels. Here we demonstrate the precise control of individual edge-channel trajectories in quantum point contact devices in the QH regime. The biased tip of an atomic force microscope is used as a moveable local gate to pilot individual edge channels. Our results are discussed in light of the implementation of multi-edge interferometers.
We investigate the correlations of mutual positions of charge density waves nodes in side-by-side placed InAs nanowires in presence of a conductive atomic force microscope tip served as a mobile gate at helium temperatures. Scanning gate microscopy s cans demonstrate mutual correlation of positions of charge density waves nodes of two wires. A general mutual shift of the nodes positions and crystal lattice mismatch defect were observed. These observations demonstrate the crucial role of Coulomb interaction in formation of charge density waves in InAs nanowires.
In scanning gate microscopy, where the tip of a scanning force microscope is used as a movable gate to study electronic transport in nanostructures, the shape and magnitude of the tip-induced potential are important for the resolution and interpretat ion of the measurements. Contaminations picked up during topography scans may significantly alter this potential. We present an in situ high-field treatment of the tip that improves the tip-induced potential. A quantum dot was used to measure the tip-induced potential.
We present low temperature transport measurements on double quantum dots in InAs nanowires grown by metal-organic vapor phase epitaxy. Two dots in series are created by lithographically defined top-gates with a procedure involving no extra insulating layer. We demonstrate the full tunability from strong to weak coupling between the dots. The quantum mechanical nature of the coupling leads to the formation of a molecular state extending over both dots. The excitation spectra of the individual dots are observable by their signatures in the nonlinear transport.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا