ﻻ يوجد ملخص باللغة العربية
Understanding the spatial distribution of charge carriers in III-V nanowires proximity coupled to superconductors is important for the design and interpretation of experiments based on hybrid quantum devices. In this letter, the gate-dependent surface accumulation layer of InAsSb/Al nanowires was studied by means of Andreev interference in a parallel magnetic field. Both uniform hybrid nanowires and devices featuring a short Josephson junction fabricated by shadow lithography, exhibited periodic modulation of the switching current. The period corresponds to a flux quantum through the nanowire diameter and is consistent with Andreev bound states occupying a cylindrical surface accumulation layer. The spatial distribution was tunable by a gate potential as expected from electrostatic models.
The combination of strong spin-orbit coupling, large $g$-factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxia
Dispersive charge sensing is realized in hybrid semiconductor-superconductor nanowires in gate-defined single- and double-island device geometries. Signal-to-noise ratios (SNRs) were measured both in the frequency and time domain. Frequency-domain me
We demonstrate robust superconducting proximity effect in InAs$_{0.5}$Sb$_{0.5}$ quantum wells grown with epitaxial Al contact, which has important implications for mesoscopic and topological superconductivity. Unlike more commonly studied InAs and I
We study the electronic properties of InAs/EuS/Al heterostructures as explored in a recent experiment [S. Vaitiekenas emph{et al.}, Nat. Phys. (2020)], combining both spectroscopic results and microscopic device simulations. In particular, we use ang
We study the dynamics of excitons in GaAs/(Al,Ga)As core-shell nanowires by continuous-wave and time-resolved photoluminescence and photoluminescence excitation spectroscopy. Strong Al segregation in the shell of the nanowires leads to the formation