ﻻ يوجد ملخص باللغة العربية
We revisit the complexity of procedures on SFAs (such as intersection, emptiness, etc.) and analyze them according to the measures we find suitable for symbolic automata: the number of states, the maximal number of transitions exiting a state, and the size of the most complex transition predicate. We pay attention to the special forms of SFAs: {normalized SFAs} and {neat SFAs}, as well as to SFAs over a {monotonic} effective Boolean algebra.
Some of the most interesting and important results concerning quantum finite automata are those showing that they can recognize certain languages with (much) less resources than corresponding classical finite automata cite{Amb98,Amb09,AmYa11,Ber05,Fr
Algorithms for (nondeterministic) finite-state tree automata (FTAs) are often tested on random FTAs, in which all internal transitions are equiprobable. The run-time results obtained in this manner are usually overly optimistic as most such generated
We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of $2^{mathcal{O}(n)}$ on the size of nondeterminist
We approach the task of computing a carefully synchronizing word of optimum length for a given partial deterministic automaton, encoding the problem as an instance of SAT and invoking a SAT solver. Our experiments demonstrate that this approach gives
Previously, self-verifying symmetric difference automata were defined and a tight bound of 2^n-1-1 was shown for state complexity in the unary case. We now consider the non-unary case and show that, for every n at least 2, there is a regular language