ﻻ يوجد ملخص باللغة العربية
Algorithms for (nondeterministic) finite-state tree automata (FTAs) are often tested on random FTAs, in which all internal transitions are equiprobable. The run-time results obtained in this manner are usually overly optimistic as most such generated random FTAs are trivial in the sense that the number of states of an equivalent minimal deterministic FTA is extremely small. It is demonstrated that nontrivial random FTAs are obtained only for a narrow band of transition probabilities. Moreover, an analytic analysis yields a formula to approximate the transition probability that yields the most complex random FTAs, which should be used in experiments.
We revisit the complexity of procedures on SFAs (such as intersection, emptiness, etc.) and analyze them according to the measures we find suitable for symbolic automata: the number of states, the maximal number of transitions exiting a state, and th
Some of the most interesting and important results concerning quantum finite automata are those showing that they can recognize certain languages with (much) less resources than corresponding classical finite automata cite{Amb98,Amb09,AmYa11,Ber05,Fr
A weight normalization procedure, commonly called pushing, is introduced for weighted tree automata (wta) over commutative semifields. The normalization preserves the recognized weighted tree language even for nondeterministic wta, but it is most use
We approach the task of computing a carefully synchronizing word of optimum length for a given partial deterministic automaton, encoding the problem as an instance of SAT and invoking a SAT solver. Our experiments demonstrate that this approach gives
In this paper, we propose a privacy-preserving medical treatment system using nondeterministic finite automata (NFA), hereafter referred to as P-Med, designed for the remote medical environment. P-Med makes use of the nondeterministic transition char