ترغب بنشر مسار تعليمي؟ اضغط هنا

On the state complexity of semi-quantum finite automata

170   0   0.0 ( 0 )
 نشر من قبل Shenggen Zheng
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

Some of the most interesting and important results concerning quantum finite automata are those showing that they can recognize certain languages with (much) less resources than corresponding classical finite automata cite{Amb98,Amb09,AmYa11,Ber05,Fre09,Mer00,Mer01,Mer02,Yak10,ZhgQiu112,Zhg12}. This paper shows three results of such a type that are stronger in some sense than other ones because (a) they deal with models of quantum automata with very little quantumness (so-called semi-quantum one- and two-way automata with one qubit memory only); (b) differences, even comparing with probabilistic classical automata, are bigger than expected; (c) a trade-off between the number of classical and quantum basis states needed is demonstrated in one case and (d) languages (or the promise problem) used to show main results are very simple and often explored ones in automata theory or in communication complexity, with seemingly little structure that could be utilized.

قيم البحث

اقرأ أيضاً

We revisit the complexity of procedures on SFAs (such as intersection, emptiness, etc.) and analyze them according to the measures we find suitable for symbolic automata: the number of states, the maximal number of transitions exiting a state, and th e size of the most complex transition predicate. We pay attention to the special forms of SFAs: {normalized SFAs} and {neat SFAs}, as well as to SFAs over a {monotonic} effective Boolean algebra.
The concept of promise problems was introduced and started to be systematically explored by Even, Selman, Yacobi, Goldreich, and other scholars. It has been argued that promise problems should be seen as partial decision problems and as such that the y are more fundamental than decision problems and formal languages that used to be considered as the basic ones for complexity theory. The main purpose of this paper is to explore the promise problems accepted by classical, quantum and also semi-quantum finite automata. More specifically, we first introduce two acceptance modes of promise problems, recognizability and solvability, and explore their basic properties. Afterwards, we show several results concerning descriptional complexity on promise problems. In particular, we prove: (1) there is a promise problem that can be recognized exactly by measure-once one-way quantum finite automata (MO-1QFA), but no deterministic finite automata (DFA) can recognize it; (2) there is a promise problem that can be solved with error probability $epsilonleq 1/3$ by one-way finite automaton with quantum and classical states (1QCFA), but no one-way probability finite automaton (PFA) can solve it with error probability $epsilonleq 1/3$; and especially, (3) there are promise problems $A(p)$ with prime $p$ that can be solved {em with any error probability} by MO-1QFA with only two quantum basis states, but they can not be solved exactly by any MO-1QFA with two quantum basis states; in contrast, the minimal PFA solving $A(p)$ with any error probability (usually smaller than $1/2$) has $p$ states. Finally, we mention a number of problems related to promise for further study.
In this paper, we introduce the model of quantum Mealy machines and study the equivalence checking and minimisation problems of them. Two efficient algorithms are developed for checking equivalence of two states in the same machine and for checking e quivalence of two machines. As an application, they are used in equivalence checking of quantum circuits. Moreover, the minimisation problem is proved to be in $textbf{PSPACE}$.
131 - Thomas Hanneforth 2013
Algorithms for (nondeterministic) finite-state tree automata (FTAs) are often tested on random FTAs, in which all internal transitions are equiprobable. The run-time results obtained in this manner are usually overly optimistic as most such generated random FTAs are trivial in the sense that the number of states of an equivalent minimal deterministic FTA is extremely small. It is demonstrated that nontrivial random FTAs are obtained only for a narrow band of transition probabilities. Moreover, an analytic analysis yields a formula to approximate the transition probability that yields the most complex random FTAs, which should be used in experiments.
We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of $2^{mathcal{O}(n)}$ on the size of nondeterminist ic finite automata (NFAs) representing the subword closure of a CFG of size $n$. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of $2^{2^{mathcal{O}(n)}}$ following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا