ترغب بنشر مسار تعليمي؟ اضغط هنا

Confidence bands for a log-concave density

393   0   0.0 ( 0 )
 نشر من قبل Guenther Walther
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new approach for inference about a log-concave distribution: Instead of using the method of maximum likelihood, we propose to incorporate the log-concavity constraint in an appropriate nonparametric confidence set for the cdf $F$. This approach has the advantage that it automatically provides a measure of statistical uncertainty and it thus overcomes a marked limitation of the maximum likelihood estimate. In particular, we show how to construct confidence bands for the density that have a finite sample guaranteed confidence level. The nonparametric confidence set for $F$ which we introduce here has attractive computational and statistical properties: It allows to bring modern tools from optimization to bear on this problem via difference of convex programming, and it results in optimal statistical inference. We show that the width of the resulting confidence bands converges at nearly the parametric $n^{-frac{1}{2}}$ rate when the log density is $k$-affine.

قيم البحث

اقرأ أيضاً

We study nonparametric maximum likelihood estimation of a log-concave probability density and its distribution and hazard function. Some general properties of these estimators are derived from two characterizations. It is shown that the rate of conve rgence with respect to supremum norm on a compact interval for the density and hazard rate estimator is at least $(log(n)/n)^{1/3}$ and typically $(log(n)/n)^{2/5}$, whereas the difference between the empirical and estimated distribution function vanishes with rate $o_{mathrm{p}}(n^{-1/2})$ under certain regularity assumptions.
In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive point estimation, the construction of ad aptive confidence regions is severely limited (cf. Li, 1989). The present paper sheds new light on this gap. We develop exact and adaptive confidence sets for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral chi-squared distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.
We find limiting distributions of the nonparametric maximum likelihood estimator (MLE) of a log-concave density, that is, a density of the form $f_0=expvarphi_0$ where $varphi_0$ is a concave function on $mathbb{R}$. The pointwise limiting distributi ons depend on the second and third derivatives at 0 of $H_k$, the lower invelope of an integrated Brownian motion process minus a drift term depending on the number of vanishing derivatives of $varphi_0=log f_0$ at the point of interest. We also establish the limiting distribution of the resulting estimator of the mode $M(f_0)$ and establish a new local asymptotic minimax lower bound which shows the optimality of our mode estimator in terms of both rate of convergence and dependence of constants on population values.
In this paper, we provide non-asymptotic upper bounds on the error of sampling from a target density using three schemes of discretized Langevin diffusions. The first scheme is the Langevin Monte Carlo (LMC) algorithm, the Euler discretization of the Langevin diffusion. The second and the third schemes are, respectively, the kinetic Langevin Monte Carlo (KLMC) for differentiable potentials and the kinetic Langevin Monte Carlo for twice-differentiable potentials (KLMC2). The main focus is on the target densities that are smooth and log-concave on $mathbb R^p$, but not necessarily strongly log-concave. Bounds on the computational complexity are obtained under two types of smoothness assumption: the potential has a Lipschitz-continuous gradient and the potential has a Lipschitz-continuous Hessian matrix. The error of sampling is measured by Wasserstein-$q$ distances. We advocate for the use of a new dimension-adapted scaling in the definition of the computational complexity, when Wasserstein-$q$ distances are considered. The obtained results show that the number of iterations to achieve a scaled-error smaller than a prescribed value depends only polynomially in the dimension.
Recently, Kabaila and Wijethunga assessed the performance of a confidence interval centred on a bootstrap smoothed estimator, with width proportional to an estimator of Efrons delta method approximation to the standard deviation of this estimator. Th ey used a testbed situation consisting of two nested linear regression models, with error variance assumed known, and model selection using a preliminary hypothesis test. This assessment was in terms of coverage and scaled expected length, where the scaling is with respect to the expected length of the usual confidence interval with the same minimum coverage probability. They found that this confidence interval has scaled expected length that (a) has a maximum value that may be much greater than 1 and (b) is greater than a number slightly less than 1 when the simpler model is correct. We therefore ask the following question. For a confidence interval, centred on the bootstrap smoothed estimator, does there exist a formula for its data-based width such that, in this testbed situation, it has the desired minimum coverage and scaled expected length that (a) has a maximum value that is not too much larger than 1 and (b) is substantially less than 1 when the simpler model is correct? Using a recent decision-theoretic performance bound due to Kabaila and Kong, it is shown that the answer to this question is `no for a wide range of scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا