ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency

111   0   0.0 ( 0 )
 نشر من قبل Lutz Duembgen
 تاريخ النشر 2009
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We study nonparametric maximum likelihood estimation of a log-concave probability density and its distribution and hazard function. Some general properties of these estimators are derived from two characterizations. It is shown that the rate of convergence with respect to supremum norm on a compact interval for the density and hazard rate estimator is at least $(log(n)/n)^{1/3}$ and typically $(log(n)/n)^{2/5}$, whereas the difference between the empirical and estimated distribution function vanishes with rate $o_{mathrm{p}}(n^{-1/2})$ under certain regularity assumptions.

قيم البحث

اقرأ أيضاً

We find limiting distributions of the nonparametric maximum likelihood estimator (MLE) of a log-concave density, that is, a density of the form $f_0=expvarphi_0$ where $varphi_0$ is a concave function on $mathbb{R}$. The pointwise limiting distributi ons depend on the second and third derivatives at 0 of $H_k$, the lower invelope of an integrated Brownian motion process minus a drift term depending on the number of vanishing derivatives of $varphi_0=log f_0$ at the point of interest. We also establish the limiting distribution of the resulting estimator of the mode $M(f_0)$ and establish a new local asymptotic minimax lower bound which shows the optimality of our mode estimator in terms of both rate of convergence and dependence of constants on population values.
We present a new approach for inference about a log-concave distribution: Instead of using the method of maximum likelihood, we propose to incorporate the log-concavity constraint in an appropriate nonparametric confidence set for the cdf $F$. This a pproach has the advantage that it automatically provides a measure of statistical uncertainty and it thus overcomes a marked limitation of the maximum likelihood estimate. In particular, we show how to construct confidence bands for the density that have a finite sample guaranteed confidence level. The nonparametric confidence set for $F$ which we introduce here has attractive computational and statistical properties: It allows to bring modern tools from optimization to bear on this problem via difference of convex programming, and it results in optimal statistical inference. We show that the width of the resulting confidence bands converges at nearly the parametric $n^{-frac{1}{2}}$ rate when the log density is $k$-affine.
We present theoretical properties of the log-concave maximum likelihood estimator of a density based on an independent and identically distributed sample in $mathbb{R}^d$. Our study covers both the case where the true underlying density is log-concav e, and where this model is misspecified. We begin by showing that for a sequence of log-concave densities, convergence in distribution implies much stronger types of convergence -- in particular, it implies convergence in Hellinger distance and even in certain exponentially weighted total variation norms. In our main result, we prove the existence and uniqueness of a log-concave density that minimises the Kullback--Leibler divergence from the true density over the class all log-concave densities, and also show that the log-concave maximum likelihood estimator converges almost surely in these exponentially weighted total variation norms to this minimiser. In the case of a correctly specified model, this demonstrates a strong type of consistency for the estimator; in a misspecified model, it shows that the estimator converges to the log-concave density that is closest in the Kullback--Leibler sense to the true density.
Let X_1, ..., X_n be independent and identically distributed random vectors with a log-concave (Lebesgue) density f. We first prove that, with probability one, there exists a unique maximum likelihood estimator of f. The use of this estimator is attr active because, unlike kernel density estimation, the method is fully automatic, with no smoothing parameters to choose. Although the existence proof is non-constructive, we are able to reformulate the issue of computation in terms of a non-differentiable convex optimisation problem, and thus combine techniques of computational geometry with Shors r-algorithm to produce a sequence that converges to the maximum likelihood estimate. For the moderate or large sample sizes in our simulations, the maximum likelihood estimator is shown to provide an improvement in performance compared with kernel-based methods, even when we allow the use of a theoretical, optimal fixed bandwidth for the kernel estimator that would not be available in practice. We also present a real data clustering example, which shows that our methodology can be used in conjunction with the Expectation--Maximisation (EM) algorithm to fit finite mixtures of log-concave densities. An R version of the algorithm is available in the package LogConcDEAD -- Log-Concave Density Estimation in Arbitrary Dimensions.
200 - Tepmony Sim 2021
The class of observation-driven models (ODMs) includes many models of non-linear time series which, in a fashion similar to, yet different from, hidden Markov models (HMMs), involve hidden variables. Interestingly, in contrast to most HMMs, ODMs enjo y likelihoods that can be computed exactly with computational complexity of the same order as the number of observations, making maximum likelihood estimation the privileged approach for statistical inference for these models. A celebrated example of general order ODMs is the GARCH$(p,q)$ model, for which ergodicity and inference has been studied extensively. However little is known on more general models, in particular integer-valued ones, such as the log-linear Poisson GARCH or the NBIN-GARCH of order $(p,q)$ about which most of the existing results seem restricted to the case $p=q=1$. Here we fill this gap and derive ergodicity conditions for general ODMs. The consistency and the asymptotic normality of the maximum likelihood estimator (MLE) can then be derived using the method already developed for first order ODMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا