ﻻ يوجد ملخص باللغة العربية
We find limiting distributions of the nonparametric maximum likelihood estimator (MLE) of a log-concave density, that is, a density of the form $f_0=expvarphi_0$ where $varphi_0$ is a concave function on $mathbb{R}$. The pointwise limiting distributions depend on the second and third derivatives at 0 of $H_k$, the lower invelope of an integrated Brownian motion process minus a drift term depending on the number of vanishing derivatives of $varphi_0=log f_0$ at the point of interest. We also establish the limiting distribution of the resulting estimator of the mode $M(f_0)$ and establish a new local asymptotic minimax lower bound which shows the optimality of our mode estimator in terms of both rate of convergence and dependence of constants on population values.
We present theoretical properties of the log-concave maximum likelihood estimator of a density based on an independent and identically distributed sample in $mathbb{R}^d$. Our study covers both the case where the true underlying density is log-concav
We study nonparametric maximum likelihood estimation of a log-concave probability density and its distribution and hazard function. Some general properties of these estimators are derived from two characterizations. It is shown that the rate of conve
Let X_1, ..., X_n be independent and identically distributed random vectors with a log-concave (Lebesgue) density f. We first prove that, with probability one, there exists a unique maximum likelihood estimator of f. The use of this estimator is attr
Let ${P_{theta}:theta in {mathbb R}^d}$ be a log-concave location family with $P_{theta}(dx)=e^{-V(x-theta)}dx,$ where $V:{mathbb R}^dmapsto {mathbb R}$ is a known convex function and let $X_1,dots, X_n$ be i.i.d. r.v. sampled from distribution $P_{t
We study the problem of computing the maximum likelihood estimator (MLE) of multivariate log-concave densities. Our main result is the first computationally efficient algorithm for this problem. In more detail, we give an algorithm that, on input a s