ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the chemical enrichment and the Mass-Metallicity relation in CALIFA galaxies

68   0   0.0 ( 0 )
 نشر من قبل Artemi Camps-Fari\\~na
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use fossil record techniques on the CALIFA sample to study how galaxies in the local universe have evolved in terms of their chemical content. We show how the metallicity and the mass-metallicity relation (MZR) evolve through time for the galaxies in our sample and how this evolution varies when we divide them based on their mass, morphology and star-forming status. We also check the impact of measuring the metallicity at the centre or the outskirts. We find the expected results that the most massive galaxies got enriched faster, with the MZR getting steeper at higher redshifts. However, once we separate the galaxies into morphology bins this behaviour is not as clear, which suggests that morphology is a primary factor to determine how fast a galaxy gets enriched, with mass determining the amount of enrichment. We also find that star-forming galaxies appear to be converging in their chemical evolution, that is, the metallicity of star-forming galaxies of different mass is very similar at recent times compared to several Gyr ago.



قيم البحث

اقرأ أيضاً

We present an updated version of the mass--metallicity relation (MZR) using integral field spectroscopy data obtained from 734 galaxies observed by the CALIFA survey. These unparalleled spatially resolved spectroscopic data allow us to determine the metallicity at the same physical scale ($mathrm{R_{e}}$) for different calibrators. We obtain MZ relations with similar shapes for all calibrators, once the scale factors among them are taken into account. We do not find any significant secondary relation of the MZR with either the star formation rate (SFR) or the specific SFR for any of the calibrators used in this study, based on the analysis of the residuals of the best fitted relation. However we do see a hint for a (s)SFR-dependent deviation of the MZ-relation at low masses (M$<$10$^{9.5}$M$_odot$), where our sample is not complete. We are thus unable to confirm the results by Mannucci et al. (2010), although we cannot exclude that this result is due to the differences in the analysed datasets. In contrast, our results are inconsistent with the results by Lara-Lopez et al. (2010), and we can exclude the presence of a SFR-Mass-Oxygen abundance Fundamental Plane. These results agree with previous findings suggesting that either (1) the secondary relation with the SFR could be induced by an aperture effect in single fiber/aperture spectroscopic surveys, (2) it could be related to a local effect confined to the central regions of galaxies, or (3) it is just restricted to the low-mass regime, or a combination of the three effects.
280 - N. Vale Asari 2009
We have obtained the mass-metallicity (M-Z) relation at different lookback times for the same set of galaxies from the Sloan Digital Sky Survey, using the stellar metallicities estimated with our spectral synthesis code STARLIGHT. We have found that this relation steepens and spans a wider range in both mass and metallicity at higher redshifts. We have modeled the time evolution of stellar metallicity with a closed-box chemical evolution model, for galaxies of different types and masses. Our results suggest that the M-Z relation for galaxies with present-day stellar masses down to 10^10 M_sun is mainly driven by the history of star formation history and not by inflows or outflows.
142 - Xiangcheng Ma 2015
We use high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environment (FIRE) project to study the galaxy mass-metallicity relations (MZR) from z=0-6. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback. The simulations cover halo masses Mhalo=10^9-10^13 Msun and stellar mass Mstar=10^4-10^11 Msun at z=0 and have been shown to produce many observed galaxy properties from z=0-6. For the first time, our simulations agree reasonably well with the observed mass-metallicity relations at z=0-3 for a broad range of galaxy masses. We predict the evolution of the MZR from z=0-6 as log(Zgas/Zsun)=12+log(O/H)-9.0=0.35[log(Mstar/Msun)-10]+0.93 exp(-0.43 z)-1.05 and log(Zstar/Zsun)=[Fe/H]-0.2=0.40[log(Mstar/Msun)-10]+0.67 exp(-0.50 z)-1.04, for gas-phase and stellar metallicity, respectively. Our simulations suggest that the evolution of MZR is associated with the evolution of stellar/gas mass fractions at different redshifts, indicating the existence of a universal metallicity relation between stellar mass, gas mass, and metallicities. In our simulations, galaxies above Mstar=10^6 Msun are able to retain a large fraction of their metals inside the halo, because metal-rich winds fail to escape completely and are recycled into the galaxy. This resolves a long-standing discrepancy between sub-grid wind models (and semi-analytic models) and observations, where common sub-grid models cannot simultaneously reproduce the MZR and the stellar mass functions.
Dwarf galaxies generally follow a mass-metallicity (MZ) relation, where more massive objects retain a larger fraction of heavy elements. Young tidal dwarf galaxies (TDGs), born in the tidal tails produced by interacting gas-rich galaxies, have been t hought to not follow the MZ relation, because they inherit the metallicity of the more massive parent galaxies. We present chemical evolution models to investigate if TDGs that formed at very high redshifts, where the metallicity of their parent galaxy was very low, can produce the observed MZ relation. Assuming that galaxy interactions were more frequent in the denser high-redshift universe, TDGs could constitute an important contribution to the dwarf galaxy population. The survey of chemical evolution models of TDGs presented here captures for the first time an initial mass function (IMF) of stars that is dependent on both the star formation rate and the gas metallicity via the integrated galactic IMF (IGIMF) theory. As TDGs form in the tidal debris of interacting galaxies, the pre-enrichment of the gas, an underlying pre-existing stellar population, infall, and mass dependent outflows are considered. The models of young TDGs that are created in strongly pre-enriched tidal arms with a pre-existing stellar population can explain the measured abundance ratios of observed TDGs. The same chemical evolution models for TDGs, that form out of gas with initially very low metallicity, naturally build up the observed MZ relation. The modelled chemical composition of ancient TDGs is therefore consistent with the observed MZ relation of satellite galaxies.
We study the shape of the gas-phase mass-metallicity relation (MZR) of a combined sample of present-day dwarf and high-mass star-forming galaxies using IZI, a Bayesian formalism for measuring chemical abundances presented in Blanc et al. 2015. We obs erve a characteristic stellar mass scale at $M_* simeq 10^{9.5}$M$_{odot}$, above which the ISM undergoes a sharp increase in its level of chemical enrichment. In the $10^{6}-10^{9.5}$M$_{odot}$ range the MZR follows a shallow power-law ($Zpropto M^{alpha}_*$) with slope $alpha=0.14pm0.08$. At approaching $M_* simeq 10^{9.5}$M$_{odot}$ the MZR steepens significantly, showing a slope of $alpha=0.37pm0.08$ in the $10^{9.5}-10^{10.5}$M$_{odot}$ range, and a flattening towards a constant metallicity at higher stellar masses. This behavior is qualitatively different from results in the literature that show a single power-law MZR towards the low mass end. We thoroughly explore systematic uncertainties in our measurement, and show that the shape of the MZR is not induced by sample selection, aperture effects, a changing N/O abundance, the adopted methodology used to construct the MZR, secondary dependencies on star formation activity, nor diffuse ionized gas (DIG) contamination, but rather on differences in the method used to measure abundances. High resolution hydrodynamical simulations can qualitatively reproduce our result, and suggest a transition in the ability of galaxies to retain their metals for stellar masses above this threshold. The MZR characteristic mass scale also coincides with a transition in the scale height and clumpiness of cold gas disks, and a typical gas fraction below which the efficiency of star formation feedback for driving outflows is expected to decrease sharply.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا