ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origin and Evolution of the Galaxy Mass-Metallicity Relation

90   0   0.0 ( 0 )
 نشر من قبل Xiangcheng Ma
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xiangcheng Ma




اسأل ChatGPT حول البحث

We use high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environment (FIRE) project to study the galaxy mass-metallicity relations (MZR) from z=0-6. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback. The simulations cover halo masses Mhalo=10^9-10^13 Msun and stellar mass Mstar=10^4-10^11 Msun at z=0 and have been shown to produce many observed galaxy properties from z=0-6. For the first time, our simulations agree reasonably well with the observed mass-metallicity relations at z=0-3 for a broad range of galaxy masses. We predict the evolution of the MZR from z=0-6 as log(Zgas/Zsun)=12+log(O/H)-9.0=0.35[log(Mstar/Msun)-10]+0.93 exp(-0.43 z)-1.05 and log(Zstar/Zsun)=[Fe/H]-0.2=0.40[log(Mstar/Msun)-10]+0.67 exp(-0.50 z)-1.04, for gas-phase and stellar metallicity, respectively. Our simulations suggest that the evolution of MZR is associated with the evolution of stellar/gas mass fractions at different redshifts, indicating the existence of a universal metallicity relation between stellar mass, gas mass, and metallicities. In our simulations, galaxies above Mstar=10^6 Msun are able to retain a large fraction of their metals inside the halo, because metal-rich winds fail to escape completely and are recycled into the galaxy. This resolves a long-standing discrepancy between sub-grid wind models (and semi-analytic models) and observations, where common sub-grid models cannot simultaneously reproduce the MZR and the stellar mass functions.

قيم البحث

اقرأ أيضاً

In addition to the well-known gas phase mass-metallicity relation (MZR), recent spatially-resolved observations have shown that local galaxies also obey a mass-metallicity gradient relation (MZGR) whereby metallicity gradients can vary systematically with galaxy mass. In this work, we use our recently-developed analytic model for metallicity distributions in galactic discs, which includes a wide range of physical processes -- radial advection, metal diffusion, cosmological accretion, and metal-enriched outflows -- to simultaneously analyse the MZR and MZGR. We show that the same physical principles govern the shape of both: centrally-peaked metal production favours steeper gradients, and this steepening is diluted by the addition of metal-poor gas, which is supplied by inward advection for low-mass galaxies and by cosmological accretion for massive galaxies. The MZR and the MZGR both bend at galaxy stellar mass $sim 10^{10} - 10^{10.5},rm{M_{odot}}$, and we show that this feature corresponds to the transition of galaxies from the advection-dominated to the accretion-dominated regime. We also find that both the MZR and MZGR strongly suggest that low-mass galaxies preferentially lose metals entrained in their galactic winds. While this metal-enrichment of the galactic outflows is crucial for reproducing both the MZR and the MZGR at the low-mass end, we show that the flattening of gradients in massive galaxies is expected regardless of the nature of their winds.
86 - Ivo Saviane 2014
Our research on the age-metallicity and mass-metallicity relations of galaxies is presented and compared to the most recent investigations in the field. We have been able to measure oxygen abundances using the direct method for objects spanning four orders of magnitude in mass, and probing the last 4 Gyr of galaxy evolution. We have found preliminary evidence that the metallicity evolution is consistent with expectations based on age-metallicity relations obtained with low resolution stellar spectra of resolved Local Group galaxies.
Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish AGN from purely star-forming galaxies. Yet, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z~0 reference sample built from ~300,000 SDSS galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z~1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal ISM properties out to z~1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies, and may be more important starting at z>2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams, and the MZ relation as a function of emission line luminosity limits, is made publicly available.
We examine the origin of the mass discrepancy--radial acceleration relation (MDAR) of disk galaxies. This is a tight empirical correlation between the disk centripetal acceleration and that expected from the baryonic component. The MDAR holds for mos t radii probed by disk kinematic tracers, regardless of galaxy mass or surface brightness. The relation has two characteristic accelerations; $a_0$, above which all galaxies are baryon-dominated; and $a_{rm min}$, an effective minimum aceleration probed by kinematic tracers in isolated galaxies. We use a simple model to show that these trends arise naturally in $Lambda$CDM. This is because: (i) disk galaxies in $Lambda$CDM form at the centre of dark matter haloes spanning a relatively narrow range of virial mass; (ii) cold dark matter halo acceleration profiles are self-similar and have a broad maximum at the centre, reaching values bracketed precisely by $a_{rm min}$ and $a_0$ in that mass range; and (iii) halo mass and galaxy size scale relatively tightly with the baryonic mass of a galaxy in any successful $Lambda$CDM galaxy formation model. Explaining the MDAR in $Lambda$CDM does not require modifications to the cuspy inner mass profiles of dark haloes, although these may help to understand the detailed rotation curves of some dwarf galaxies and the origin of extreme outliers from the main relation. The MDAR is just a reflection of the self-similar nature of cold dark matter haloes and of the physical scales introduced by the galaxy formation process.
Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich cluster s, to study the dependence of the metallicity and related quantities on the mass of the systems. The simulations are performed with an improved version of the Smoothed-Particle-Hydrodynamics texttt{GADGET-3} code and consider various astrophysical processes including radiative cooling, metal enrichment and feedback from stars and active galactic nuclei (AGN). The scaling between the metallicity and the temperature obtained in the simulations agrees well in trend and evolution with the observational results obtained from two data samples characterised by a wide range of masses and a large redshift coverage. We find that the iron abundance in the cluster core ($r<0.1R_{500}$) does not correlate with the temperature nor presents a significant evolution. The scale invariance is confirmed when the metallicity is related directly to the total mass. The slope of the best-fitting relations is shallow ($betasim-0.1$) in the innermost regions ($r<0.5R_{500}$) and consistent with zero outside. We investigate the impact of the AGN feedback and find that it plays a key role in producing a constant value of the outskirts metallicity from groups to clusters. This finding additionally supports the picture of early enrichment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا