ﻻ يوجد ملخص باللغة العربية
We present an updated version of the mass--metallicity relation (MZR) using integral field spectroscopy data obtained from 734 galaxies observed by the CALIFA survey. These unparalleled spatially resolved spectroscopic data allow us to determine the metallicity at the same physical scale ($mathrm{R_{e}}$) for different calibrators. We obtain MZ relations with similar shapes for all calibrators, once the scale factors among them are taken into account. We do not find any significant secondary relation of the MZR with either the star formation rate (SFR) or the specific SFR for any of the calibrators used in this study, based on the analysis of the residuals of the best fitted relation. However we do see a hint for a (s)SFR-dependent deviation of the MZ-relation at low masses (M$<$10$^{9.5}$M$_odot$), where our sample is not complete. We are thus unable to confirm the results by Mannucci et al. (2010), although we cannot exclude that this result is due to the differences in the analysed datasets. In contrast, our results are inconsistent with the results by Lara-Lopez et al. (2010), and we can exclude the presence of a SFR-Mass-Oxygen abundance Fundamental Plane. These results agree with previous findings suggesting that either (1) the secondary relation with the SFR could be induced by an aperture effect in single fiber/aperture spectroscopic surveys, (2) it could be related to a local effect confined to the central regions of galaxies, or (3) it is just restricted to the low-mass regime, or a combination of the three effects.
We use fossil record techniques on the CALIFA sample to study how galaxies in the local universe have evolved in terms of their chemical content. We show how the metallicity and the mass-metallicity relation (MZR) evolve through time for the galaxies
We present the results on the study of the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2-
Dwarf galaxies generally follow a mass-metallicity (MZ) relation, where more massive objects retain a larger fraction of heavy elements. Young tidal dwarf galaxies (TDGs), born in the tidal tails produced by interacting gas-rich galaxies, have been t
We study the shape of the gas-phase mass-metallicity relation (MZR) of a combined sample of present-day dwarf and high-mass star-forming galaxies using IZI, a Bayesian formalism for measuring chemical abundances presented in Blanc et al. 2015. We obs
We present the results from a large near-infrared spectroscopic survey with Subaru/FMOS (textit{FastSound}) consisting of $sim$ 4,000 galaxies at $zsim1.4$ with significant H$alpha$ detection. We measure the gas-phase metallicity from the [N~{sc ii}]